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Abstract

The growing share of financial assets that are held and managed by large institu-
tional investors whose desired trades move asset prices is at odds with the traditional
competitive assumption that investors are small and take prices as given. This paper
relaxes the traditional price-taking assumption and instead presents a dynamic multi-
ple asset model of imperfect competition in asset markets among large investors who
differ in their risk aversion. The model is used to study asset price dynamics during
an LTCM-like scenario in which market rumors of distressed asset sales are followed at
a later date by the sales themselves. Using the model, it is shown that large investors
front-run distressed sales; asset prices overshoot their long-run fundamentals; and asset
pricing models experience temporary breakdown. During the period of model break-
down assets equilibrium returns are explained by the market portfolio and by transient
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1 Introduction

An increasingly large share of financial assets are owned or managed by large institutional
investors whose desired orderflow can be large enough to move prices – and who account
for their price impact when trading [Chan and Lakonishok (1995)]. Because large investors
cannot buy or sell all of the assets that they desire at prevailing prices, markets are not
completely liquid from their perspective. In this paper, I theoretically study how the liquid-
ity problems associated with large investors affect equilibrium asset prices, market liquidity,
shock absorption, and the transmission of shocks across asset markets. These topics are
especially relevant for understanding market function during times when or more large in-
vestors are financially distressed and have to quickly liquidate some or all of their positions
to meet margin calls, or for other cash needs. The most recent well known stress liquidation
occurred during the period surrounding the Fall of 1998 when rumors that the financially
distressed hedge fund Long Term Capital Management (LTCM) would be forced to liquidate
its positions, were followed sometime later by the liquidations themselves. During the period
of LTCM’s troubles, liquidity declined in a number of markets, and the performance of stan-
dard asset pricing models deteriorated. One form of this deterioration was the emergence
of additional factors which helped to price assets during the times of the LTCM crisis.1 In
addition to the asset pricing anomalies, there were also widespread rumors that LTCM’s
trades were being front-run by other market participants. Empirical support that LTCM’s
trades may have been front-run is provided by Cai (2003).2

To analyze how large investors affect market functioning, I build a multi-asset, multi-
participant, dynamic model of imperfect competition in asset markets. All participants in the
model are risk averse, and fully rational. Using the model I characterize how large investors
affect asset pricing relationships in general, and I study an LTCM-like scenario in which
rumors about future distressed sales are followed sometime later by the sales themselves.
The resulting pattern of asset prices and trades are broadly consistent with the stylized
facts during the period of LTCM’s troubles. The anticipation of future distressed sales
is accompanied by front-running like behavior in which some investors sell ahead of the
future sales. Additionally, prices overshoot their long-run fundamental values, and asset
pricing models (in this model the CAPM) temporarily breakdown. During the period of
the breakdown, asset returns satisfy a multi-factor model in which one factor is the market
portfolio, and the other factors emerge as a result of how imperfect liquidity conditions affect
the pattern of dynamic risk sharing in the aftermath of a large shock.

1For example, in the interest rate swaptions market, Longstaff, Santa Clara, and Schwartz (2000) found
that an additional “event-related” pricing factor was required to explain the behavior of swaption prices
during periods of severe market stress such as in the Fall of 1998.

2Part of LTCM’s positions reportedly involved a short position in U.S. treasuries, and a long position in
Danish mortgage backed securities and other high-yield fixed income instruments (Edwards, 1999). When
LTCM was in financial distress, it presumably (their trades are private information) liquidated its positions
by purchasing U.S. treasuries and selling high-yield debt. Cai’s data can only be used to make inference on
LTCM’s trades in the Treasury bond futures markets. Her findings suggest that LTCM’s purchases of U.S.
Treasury futures were front-run.
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Investors risk aversion is an important determinant of market liquidity and the pattern
of equilibrium risk sharing. In a one period setting with perfect liquidity, investors risk
aversions’ measure the certainty equivalent wealth that they are willing to pay to eliminate
risk from their portfolio. In a dynamic setting, the certainty equivalents translate into the
liquidity costs that investors are willing to pay to eliminate or take on additional risks; and
differences in investors risk aversion dictate how risks are shared among investors through
time.

The importance of market illiquidity for asset pricing depends on investors demands to
trade. During normal circumstances, if large investors asset holdings are nearly consistent
with optimal risk sharing, and large shocks are rare, then investors have little need for trade,
and liquidity considerations do not affect prices even though markets are illiquid. However,
liquidity is priced following large shocks because market liquidity determines the resulting
pattern of equilibrium risk-sharing. Because market liquidity is priced following large shocks,
this mechanism for liquidity to affect asset returns is distinct from liquidity affecting asset
returns through hedging against future shocks as in the ICAPM.

The analysis in this paper is related to the voluminous literature on market liquidity
and to the literature on strategic trading. Asset market illiquidity is usually modeled as
deriving from some combination of the following three sources: exogenous transaction costs,
asymmetric information, or imperfect competition in asset markets.3 This paper is most
closely related to the literature on imperfect competition in asset markets when information
is symmetric.4 Lindenberg (1979) models the behavior of many large investors trading many
assets in a single period mean-variance setting. Basak(1997) and Kihlstrom(2001) expand
the analysis to allow for multiple time periods, but they only consider a setting in which
there is a single large investor. The model presented here can be understood as an extension
of Lindenberg, Basak, and Kihlstrom, which allows for multiple time periods, multiple risky
assets, and multiple large investors who vary in their risk aversion. Although I did not do
so, the model could also have been derived by extending the dynamic models of Urosevic
(2002a) or Vayanos (2001) to allow for multiple assets and multiple large investors who vary
in their risk aversion while removing the moral hazard elements of Urosevic’s model, or by

3The literature is far too large to cite all the relevant papers. Illiquidity resulting from exogenous trans-
action costs is studied by Constantinides (1986), Heaton and Lucas (1996), Vayanos (1998), Vayanos and
Vila (1999), Huang (1999), and Milne and Neave (2003). One type of transaction costs is search costs;
this is studied by Duffie et. al. (2001). Illiquidity resulting from asymmetric information about asset pay-
offs is studied in many papers including Glosten and Milgrom (1985), Kyle (1985), Kyle (1989), Eisfeldt
(2001). Asymmetric information about market participants asset holdings is studied by Cao and Lyons
(1999), Vayanos (1999), and Vayanos (2001). Finally, illiquidity resulting from imperfect competition in
asset markets is studied by Lindenberg(1979), Kyle (1985), Kyle (1989), Basak (1997), Cao and Lyons
(1999), Vayanos (1999), DeMarzo and Urosevic (2000), Urosevic(2002a), Urosevic(2002b), Vayanos (2001),
and Kihlstrom (2001). Although less common, illiquidity has also been modeled as resulting from Knightian
uncertainty [Cherubini and Della Lunga (2001, forthcoming), Routledge and Zin (2001)]; or as the outcome
of optimal security design [Boudoukh and Whitelaw (1993), DeMarzo and Duffie (1999)].

4One strand of this literature which is not pursued here follows Grossman and Miller (1988) and models
liquidity as a function of the number of non-strategic market makers, which is itself endogenous. Fernando
(2003) and Fernando and Herring (2003) make the number of market makers an endogenous function of the
relative importance of idiosyncratic and systematic valuation shocks.
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removing the noise traders and information asymmetry that are present in Vayanos’ model.5

The distressed investor analysis is related to models in which strategic investors take
advantage of the constraints faced by other “distressed” investors. For example, in a futures
market corner and squeeze, distressed investors need to buy in order to cover their short
positions, and strategic investors corner the market to drive up the prices paid by distressed
investors [Cooper and Donaldson (1998), Chatterjea and Jarrow, (1998)]. This paper is
more closely related to recent theoretical work on distressed sellers. Brunnermeier and
Pedersen (2002), hereafter BP, show that investors who are forced to sell off their positions
are vulnerable to a predatory trading strategy in which large non-distressed investors profit
by selling ahead of, or at the same time as the distressed seller, and then purchase back
assets after prices have fallen. Attari, Mello, and Ruckes (2002), hereafter AMR, model
a situation in which a risk neutral arbitrageur who is also a large investor faces financing
constraints. The constraints provide other investors with opportunities to drive prices against
the arbitrageur. The distinguishing feature of AMR is their very careful analysis of the issues
raised by financing constraints in a strategic setting.

The model presented here differs from both BP and AMR in two key modeling assump-
tions. First, all investors in their models are risk neutral, while all investors here are risk
averse. Second, and more importantly, some of the investors in BP and AMR not fully ra-
tional. More specifically, both BP and AMR assume that there is a long-term investor with
an exogenously given downward sloping demand curve that takes the other side of strategic
investors trades. This is equivalent to assuming that there is a substantial basis for trade
between the strategic investor and the long-term investor. This assumption is questionable
because the long-term investor buys high before the distressed sales and then sell low after-
wards. Presumably, the long-term investor would behave differently if aware of the distressed
sales.

In contrast with BP and AMR, in my model, all investors are fully rational, risk averse,
and fully aware of the distressed sales. Even in my model, when large investors differ in their
risk aversion, it turns out that the distressed sales generate a basis for trade among the non-
distressed investors—and front-running and predatory trading sometimes result. However,
when all investors agree there are distressed sales and account for it in their choices, the
basis for trade among other investors during or before the distressed sales is weak, and
the amount of front-running and predatory trading that arise in equilibrium is very small
relative to the volume of distressed sales. More importantly, the bulk of the distressed sellers
losses are a result of how imperfect competition affects the prices he receives, and is not a
result of front-running or predatory trading. In light of the differences between my results
and those reported in BP, I interpret my results as applicable to situations where most

5Urosevic’s (2002a) extends DeMarzo and Urosevic’s (2000) dynamic model of a single large investor to a
setting in which several large shareholders choose to trade the assets of one or more firms while simultaneously
choosing how carefully to monitor the behavior of the firms’ management. Urosevic (2002a) does not examine
a setting with many large investors and many risky assets. He instead examines a setting with one large
investor and many risky assets, or one risky asset and many large investors. He also only considers the case
in which all large investors have the same risk aversion. Urosevic (2002b) empirically tests the theoretical
model in Urosevic (2002a).
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investors are aware of the distressed sales, and I interpret their results as applicable when
some participants are aware of the distressed sales but many others are not.6

The results on distressed sales are also related to the sunshine trading literature which
studied the relationship between preannouncement of trades and the price impact of trading.
For example, Admati and Pfleiderer (1991) model a noisy competitive setting with asym-
metric information; in this setting they show that uninformed traders can reduce their own
price impact by preannouncing their trades and signalling that they are uninformed. In my
model, the distressed sellers can be viewed as sunshine traders because their trades are an-
nounced ahead of time and everyone knows they do not have private information. However,
my setting differs from that of Admati and Pfleiderer because the setting is strategic. This
raises the question of whether distressed investors benefit from preannouncing their trades in
a strategic setting. I analyze this question as part of the distressed investor analysis below.

The remainder of the paper consists of six sections. The next section presents the general
model of large investors. Section 3 studies the implications of the model for asset pricing and
shock transmission and absorption; section 4 examines how large investors affect equilibrium
trades, asset prices, and market liquidity when there is a distressed seller; section 5 studies
the relationship between liquidity and the distribution of risk-sharing capacity across large
investors; a final section concludes.

2 The Model

In this section I construct a model of the dynamic interaction of large and small investors in
financial markets. The analysis builds on Kihlstrom’s (2001) model of a dynamic monopolist
that sells a single risky asset over two time periods to a price-taking investor.7 The model
extends Kihlstrom’s dynamic monopoly framework to a dynamic oligopoly setting that has
multiple investors, assets, and time periods. The economy contains M infinitely-lived market
participants, m = 1, . . .M , who consume and trade N risky assets and a single risk-free asset
over a large but finite number of time periods t = 1, . . . T − 1. In periods T and after,

6The model presented here is very different from AMR, but is more related to BP. Other differences of
this model from BP occur because BP require restrictive assumptions to generate an equilibrium with risk
neutral large investors: Large investors are constrained in the size of the long or short positions that they
can take in asset markets; and large investors face a complicated exogenous transaction costs technology
which takes the form that when investors net purchases are above a certain threshold, then each investor
experiences investor-specific transaction costs which depend on the marginal contribution of that investors
trades to the distance from the threshold. By contrast, in my model with risk averse investors, there are
no constraints on position size, nor are there exogenous assumptions about market liquidity nor about a
transaction costs technology.

7Kihlstrom shows that traded financial assets are analogous to durable goods; and therefore as in Coase
(1972) the monopolist’s inability to commit from selling additional assets in period 2 erodes his monopoly
power by lowering the price he can charge in period 1.
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participants no longer trade risky assets, but they continue to receive dividends, and borrow
and lend at the riskfree rate in order to finance their consumption.8

Participant 1 represents the net demands of a continuum of infinitesimal investors, in-
dexed by s, that are uniformly distributed on the unit interval. Each small investors take
asset prices and the state of the economy (including other investors trades) as given. In
analogy with the literature on industrial organization, participant 1 is sometimes referred
to as the competitive fringe. Participants 2 through M are large investors whose desired
orderflow moves prices. Each participant m has CARA utility of per period consumption
with coefficient of absolute risk aversion Am:

Um(Cm(t)) = −e−AmCm(t). (1)

Participants choose their asset holdings to maximize their discounted expected future utility
of consumption:

Um(Cm(t), . . . , Cm(∞)) = Et

{ ∞
∑

i=0

δiUm(Cm(t+ i))

}

. (2)

Participants risk tolerances 1/Am play an important role in the analysis. When markets
are competitive, the risk premium for bearing market risk is inversely proportional to the
sum total of investors risk tolerances,

∑M
m=1 1/Am. Define this sum as the economy’s total

risk bearing capacity; and define RBCm, the risk bearing capacity of investor m, as investor
m’s share of the economy’s total risk bearing capacity:

RBCm =
1/Am

∑m
m=1(1/Am)

.

In a competitive economy, the share of risk bearing capacity held by each investor does
not affect return dynamics. However, when markets are imperfectly competitive, whether
the risk bearing capacity is concentrated among a small number of investors, or is more
diffusely held is important. I will refer to the distribution of risk bearing capacity among
investors as the economy’s market structure. For the purposes of this paper, the market
structure is exogenous. My preferred interpretation for the origins of the market structure is
that all investors in the economy are small; and the market structure reflects how the small
investors have chosen to have their assets managed. Those investors who manage their own
portfolios are the competitive fringe and are collectively represented by investor 1. In the
appendix I show that investor 1’s risk tolerance is the sum total of the risk tolerances of all
investors who manage their own portfolios. Investors that have similar risk preferences can
economize on portfolio management costs by having their portfolios collectively managed
by a financial intermediary such as an institutional investor.9 Because each institutional

8The device of allowing for T trading periods, but having infinitely lived investors and assets was intro-
duced in DeMarzo and Urosevic (2000). I use this device because it makes the model much more parsimo-
nious. In earlier versions of this paper, investors and assets were both T -period lived.

9Other reasons why small investors might turn their portfolios over to institutional investors include
better management of individual investors liquidity needs (Nanda and Singh, 1998), and reduction in the
costs of implementing dynamic trading strategies (Mamaysky and Spiegel, 2002).
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investor trades on behalf of a positive mass of small investors, the instituional investor is
large in asset markets. In the appendix I show that if each large institutional investor makes
optimal portfolio decisions on behalf of a mass µm of identical small investors that each have
risk tolerance 1/Am,s, then the large investor behaves as if his mass is 1 and his risk tolerance
is 1/Am = µm/Am,s. Therefore, each large investor’s risk bearing capacity depends on the
risk tolerance of the base of small investors that he represents, and on the number (measure)
of investors who make up that base.10

2.1 The Assets

The economy contains N risky assets that are in fixed supply X. The risky assets pay
perfectly liquid cash dividends that are distributed i.i.d. through time:11

D(t) ∼ i.i.d. N (D̄,Ω) (3)

Participantm’s holdings of risky assets at the beginning of time period t is denotedQm(t); the
stacked NM×1 vector of all participants risky assets holdings is denoted Q(t). Similarly, the
changes in participant m’s and all investors risky asset holdings during period t are denoted
by ∆Qm(t) and ∆Q(t) respectively.12

The economy also contains a single riskfree asset that is in perfectly elastic supply. Within
each time period the holdings of riskfree assets are exactly equivalent to cash and to con-
sumption goods, but between periods the assets in the grow at rate r. Investor m’s holdings
of riskfree assets at the beginning of period t is denoted by qm(t). During period t, ∆qm(t)
denotes the change in his holdings of the riskfree assets. Hence his end of period holdings
are qm(t) + ∆qm(t), and his holdings at the beginning of the next period are:

qm(t+ 1) = r[qm(t) + ∆qm(t)]. (4)

10If a large investor takes on independent and actuarily fair risk ǫ, and then spreads it among µm identical
investors that each have risk aversion Am,s, then the Arrow-Pratt certainty equivalent that each would
require to take on his share of the risk is approximately .5Am,sσ

2

ǫ /µ2

m. Hence the total risk compensation
required by the mass µm of investors is .5Am,sσ

2

ǫ /µm. This shows absolute risk aversion of the large investor
is equal to that of each small investor divided by µm; or equivalently that the large investors risk tolerance
is equal to µ/Am,s.

11When dividends are i.i.d. asset prices are a deterministic function of time and investors asset holdings.
In ongoing work, I instead allow dividends to follow a multivariate AR(1) process with correlated shocks.
Prices are stochastic in the modified framework; nevertheless all results on equilibrium expected asset returns
continue to hold. I have not yet considered if non-i.i.d. dividends alter the dynamics of the model when
there is a distressed investor.

12Therefore
Qm(t + 1) = Qm(t) + ∆Qm(t), and Q(t + 1) = Q(t) + ∆Q(t).
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2.2 The Trading Process

At time 1, each investor m is endowed with risky and riskless asset holdings Qm(1) and qm(1)
respectively. For each time t < T each investor m enters the period with risky and riskless
asset holdings Qm(t), and qm(t) respectively. Investors then receive dividends Qm(t)′D(t)
on their beginning of period risky asset holdings, and then they trade and choose their
consumption.

The process of trade is modeled as a dynamic Cournot-Stackelberg game of full informa-
tion. In period t < T , the strategic environment is described by the state variable (Q(t), t).
Given the strategic environment, small investors form a demand schedule which describes
the market clearing prices at which the competitive fringe is willing to absorb all possible
quantities of large investors orderflow. Given this demand schedule, large investors play a
standard Cournot game in which they choose their equilibrium trades to maximize their
value functions subject to the budget constraint:

Cm(t) + ∆Qm(t)′P (t) + ∆qm(t) ≤ Qm(t)′D(t), (5)

where P (t) denotes the price of risky assets at time t. Unless stated otherwise there are no
constraints on shortselling or borrowing.13 After investors trade and consume, the period
ends; and then the same process repeats itself in all future time periods t < T .

During time periods T and after, investors do not trade risky assets, but in each period
they do make consumption (and hence savings) choices. The relevant budget constraint for
periods T and after takes the form:

Cm(t) + ∆qm(t) ≤ Qm(t)′D(t). (6)

2.3 Investors’ Information

One goal in writing this paper was to model imperfect asset liquidity in a rational framework
without asymmetric information. To rule out asymmetric information, I make the strong
assumption that all market participants have exactly the same information set: that which
is known by one participant is known by all. This means that all investors fully rational,
know the structure of the model (investor’s utility functions, distribution of asset payoffs,
etc.), as well as investors asset holdings and trades at the beginning of each time period, and
all of this is common knowledge.

13The budget constraint is standard: it requires that expenditure on period t consumption must be financed
by period t dividend income, sales of risky assets, or by running down cash holdings.
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2.4 Solving the Model

The complete solution for the model is provided in the appendix. The solution technique
uses dynamic programming to solve for investors’ value functions of entering period T with
given holdings of risky and riskfree assets. Given the value functions at time T , investors’
value functions in earlier periods are solved through backwards induction. To perform the
induction, I conjecture that the relevant state variable for each investor’s value function at
each time period is the investor’s own holdings of riskfree assets and Q(t), the entire NM×1
vector of all investors’ risky asset holdings. Given this state vector, there are four main steps
in the induction. First, for a given state vector, and value function at time t + 1, I solve
for the competitive fringe’s (investor 1) demand function to trade risky assets in period t.
Inverting this demand function produces a schedule relating large investors’ trades to time
t equilibrium asset prices. Second, given this price schedule, I solve for large participants
equilibrium trades when they take the price schedule and each others’ trades as given. Third,
given the equilibrium trades, I solve for the participants’ optimal consumption choices, and
then use the resulting choices to solve for each investors value function of entering period t
for a given set of state variables. Given the value functions at time t, the same steps are
repeated to solve for the value functions in all earlier periods.

The Price Schedule Faced by Large Investors

To illustrate the price schedule’s derivation, imagine that investors enter time period t with
risky asset holdings Q(t) and then the large investors submit risky-asset orderflow ∆Qm(t),
m = 2, . . .M . Based on this orderflow, there exists a market clearing risky asset price P (., t),
for which the risky asset demand, ∆Qs(t), of each infinitesimal investor s, s ∈ [0, 1] , solves
the maximization problem:

max
Cs(t),∆Qs(t),∆qs(t)

−e−AsCs(t) + δEt{Vs(r(qs(t) + ∆qs(t)), Qs(t) + ∆Qs(t);Q(t) + ∆Q(t), t+ 1)},
(7)

subject to the budget constraint,

Cs(t) + ∆Qs(t)
′P (., t) + ∆qs(t) ≤ Qs(t)

′D(t),

where Vs(., t+ 1) is investor s’s value of entering period t+ 1. The first three arguments of
the value function correspond to the investors time t+1 holdings of riskfree and risky assets,
and to the economy’s time t+ 1 state-vector of risky asset holdings.

For the price schedule P (., t) to be market clearing, small investors demands must satisfy
equation (7) and prices must be set so that the net orderflow of the small and large investors
sums to 0.

∫ 1

0

∆Qs(t) ds+
M
∑

m=2

∆Qm(t) = 0
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The price schedule must also be consistent with an additional internal consistency con-
dition for small investors orderflow. Recall that small investors take the orderflow of other
small investors as given and treat it as a state-variable. For small investors beliefs about
the state variable to be internally consistent, ∆Q1(t), their beliefs about the net trades of
all small investors in equation (7), must be consistent with the optimal behavior of small
investors conditional on their beliefs; i.e. internal consistency requires that14:

∆Q1(t) =

∫ 1

0

∆Qs(t)ds (8)

For any given set of trades by the large investors, I solve for equilibrium prices which
satisfy the market clearing and internal consistency conditions. Each such price P (., t) =
P (∆Q(t), Q(t), t) is one point on the price schedule which is faced by the large investors.
The full price schedule is found by solving the above problem for all possible Q(t) and all
possible ∆Q(t). The resulting price schedule turns out to a linear function of the elements
of Qm(t) and ∆Qm(t), m = 2, . . .M :15

P (., t) =
1

r

(

β0(t) − βQ(t)Q(t) −
M
∑

m=2

βm(t)∆Qm(t)

)

, (9)

where (1/r)βm(t) is the slope of the price schedule with respect to ∆Qm, large investor m′s
orderflow at time t. The coefficients βm(t) are formally derived in the appendix and not in
the text.16

Large Investors Portfolio Problem

The large investors choose their optimal portfolios by solving a maximization problem which
is similar to the one that the fringe faces in equation (7) with the difference that each large
investor plays a Cournot game in which it solves its maximization problem while using the
price schedule in equation (9) to explicitly account for the effect that its trades have on
prices. The large investors orderflow in period t is a Stackelberg-Cournot-Nash equilibrium
if the large investors take the price function as given, if each large investors’ orderflow is
optimal given the price function and given the orderflow of the other large investors, and
if the total orderflow is market clearing. To solve for the equilibrium trades of the large
investors, I first solve for each investors reaction function. Investor m’s reaction function
is an equation which specifies her optimal risky asset trades given the trades of other large
investors. A set of large investors trades which simultaneously satisfies all of the reaction
function equations is a Stackelberg-Cournot-Nash equilibrium.17 As noted above, given large

14∆Q1(t) corresponds to the first N rows of the Q(t) + ∆Q(t) argument of the small investors value
function in equation (7).

15In the appendix, see the derivation of equation (A11).
16In the appendix, I refer to the matrix vech[β2(t), β3(t), . . . , βM (t)] as βQB

(t).
17When the investors trades are chosen they take the price schedule as given; thus criteria 1 for a Stackel-

berg Cournot Nash equilibrium is satisfied. Any set of trades which jointly satisfies all reaction functions is
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investors trades, it is possible to solve for optimal consumption and then to use the result
to solve for investors value functions at time t− 1.

The resulting value functions and equilibrium trades are subgame perfect because they
are solved for by backwards induction. The backwards induction begins from period T , the
first period in which investors cannot trade. Since there is no more trade in risky assets after
period T , investors value functions for periods t ≥ T depend on the their own risky asset
holdings, but not on the risky asset holdings of other investors. Moreover, because investors
have CARA utility, and because dividends are normally distributed, each investor’s value
function at times t ≥ T is exponential linear quadratic in the investor’s own asset holdings:

Proposition 1 Let m index small or large investors in periods t ≥ T . Then, for all investors

m with CARA utility and risk aversion Am, the value of entering period t ≥ T with riskfree

asset holdings qm(t) and risky asset holdings Qm(t) is given by:

Vm(Qm(t), qm, t) = −km(t) exp−Am(t)qm(t)−Am(t)Qm(t)′V̄ (t)+.5Am(t)2Qm(t)′Ω(t)Qm(t) (10)

where,

km(T ) =

(

r

r − 1

)

× (δr)[1/(r−1)]

Am(t) = Am[1 − (1/r)]

V̄ (t) =
D̄

[1 − (1/r)]

Ω(t) =
Ω

[1 − (1/r)]

Proof: See section B.2 of the appendix.

In earlier periods of the model, the investors’ value functions are also exponential linear
quadratic, but the value functions are much more complicated since the value function depend
on future trading opportunities, which in turn depends on the allocation of risky asset
holdings among all investors. In the appendix, I show that for periods t < T , investors value
functions have the following functional forms:

Proposition 2 Small investors value functions for entering period t < T with asset holdings

Qs and qs when the economy’s vector of risky asset holdings at time t is Q is given by:

optimal given the other investor’s trades. Thus, criteria 2 is satisfied. Finally market clearing is guaranteed
since the price function was constructed under the condition that the fringe absorbs the large investors net
orderflow.
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Vs(qs, Qs, Q, t) = −Ks(t) F (Q, t) e−As(t)qs(t)−As(t)Q′

s(D̄+P (Q,t))+.5As(t)2Q′

sΩ(t)Qs ,

where F (Q, t) = e−Q′v̄s(t)− 1
2
Q′θs(t)Q

P (Q, t) = 1
r
(α(t) − Γ(t)Q).

(11)

where P (Q, t) is the equilibrium price for risky assets that is realized when investors enter

period t when the state-vector of risky asset holdings is given by Q.

For large investors m, m = 2, . . .M , the value function for entering period t < T when

the state variable is Q and m’s holdings of riskfree assets are qm is given by:

Vm(qm, Q, t) = −Km(t)e−Am(t)qm(t)−Am(t)Q′

mv̄m(t)+.5Am(t)2Q′θm(t)Q. (12)

Investors value functions are a high dimensional function of the state variables, which
in this case are NM + 1 dimensional. Typically, a dynamic model with a high dimensional
state space would be difficult to solve unless there are simplifying assumptions. In this case,
the simplifying assumptions are that investors maximize discounted expected time-separable
CARA utility of consumption, and assets’ dividends are normally distributed, and i.i.d.
through time. Because of these assumptions, the value functions have a simple exponential
linear quadratic form in Q and qm. Additionally, the only dynamic state variable that the
parameters of the value functions depend upon is time. The time-varying parameters are
the solution to a system of nonlinear Riccati difference equations. Because of the simplicity
of numerically solving the Riccati equations, it is possible to solve for the behavior of asset
prices and trades in the dynamic model even when the number of investors, assets, and time
periods is large. The main properties of the model for asset returns and trades are reviewed
in the next section.

3 Properties of the General Model

To analyze the effects that large investors have on financial market equilibrium, it is useful
to first study market equilibrium for a competitive benchmark economy which contains the
same market participants and assets, but where are all participants take prices as given.

3.1 Competitive Benchmark

The properties of the competitive economy are formally derived in section B.9 of the ap-
pendix. The properties of the competitive economy are presented in the following proposi-
tion:
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Proposition 3 When all participants in model described in section 2 take asset prices as

given, then assets expected excess returns over the risk free rate satisfy the Capital Asset

Pricing Model and are given by the equation:

P (t+ 1) + D̄ − rP (t) = λxΩX (13)

where λx, the price of market risk, is given by:

λx =
1 − (1/r)
∑M

m=1 1/Am

. (14)

Additionally, risky asset prices are constant for all times t, and equal to:

P (t) =
D̄

r − 1
− ΩX

r
∑M

m=1(1/Am)
. (15)

The vector of investors optimal risky asset holdings is also constant through time and denoted

by QW . The risky asset holdings of investor m are denoted by QW
m and given by:

QW
m =

(1/Am)X
∑M

m=1(1/Am)
. (16)

Proof: See section B.9 of the appendix.

The results in proposition 3 are well known and are a special case of the analysis in
Stapleton and Subrahmanyam (1978). Note that in the current setting, when market are
competitive, they are effectively complete and hence equilibrium asset holdings are pareto
optimal, and risk sharing is efficient. When risk sharing is efficient the percentage of risky
assets that each investor owns is equal to his risk bearing capacity; and the equilibrium asset
prices and expected returns only depend on the risk bearing capacity of the economy, and
not on the market structure as measured by the distribution of risk bearing capacity across
investors.

3.2 Imperfect Competition and Asset Pricing

Given the features of the competitive benchmark model, I now turn to the properties of the
imperfect competition model. Because the utility functions and assets in both economies are
the same, the imperfect competition model inherits many of the the properties of the perfect
competition benchmark model, as detailed in the next proposition:

Proposition 4 When asset markets are imperfectly competitive as specified in section 2 of

the text, then if market participants initial asset holdings are QW , then investors will hold

QW forever, and asset prices and expected returns will be the same as when there is perfect

competition.
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Proof: When investors risky asset holdings are QW , then investors asset holdings are pareto
optimal in all time periods. Hence there is no basis for trade among the investors and
their asset holdings will remain at QW . Because QW is the vector of asset holdings from
a competitive equilibrium, the resulting prices and expected returns which support QW are
the same as in the competitive equilibrium. 2

The practical consequence of proposition 4 is that it establishes that the imperfectly
competitive model nests CAPM pricing in the special case that asset holdings are pareto
optimal. If investors initial asset holdings are not QW , then there is a basis for trade among
the investors. When there is a basis for trade, the appendix shows that the equilibrium
path of trades and prices is a deterministic function of time and the holdings of risky assets.
The deterministic dynamics follow from the CARA utility assumption, and the assumptions
which guarantee that the investment opportunity set does not change through time.

The main consequences of the model for risky asset pricing appear when investors initial
asset holdings are not pareto optimal. In such circumstances, investors trade until they
reach a pareto optimal allocation of risky assets; but the process for reaching that allocation
depends on market liquidity. Large investors can reduce their liquidity costs by trading
at a slower rate and breaking up their trades through time. The speed with which large
investors trade toward a pareto optimal allocation is also influenced by their risk aversions.
Investors that have high coefficients of absolute risk aversion are expected to be willing to
pay a higher liquidity cost in order to quickly eliminate undesirable risk from their portfolio.
This reasoning suggests that when markets are illiquid, the allocation of risky assets holdings
among investors who differ in their risk aversion will influence asset prices because it will
influence how risks are shared among investors. This intuition is confirmed below:

Proposition 5 When investors asset holdings are not Pareto Optimal, equilibrium expected

asset returns satisfy a linear factor model in which one factor is the market portfolio, and

the other factors correspond to the deviation of large investors asset holdings from pareto

optimal asset holdings.

P (t+ 1) + D̄ − rP (t) = λXΩX +
M
∑

j=2

λ(m, t)Ω(Qm(t) −QW
m ) (17)

Proof: See section B.4 of the appendix.

Proposition 5 shows that when markets are illiquid 1-period returns have a factor-like
structure in which the market portfolio and deviation of large investors asset holdings from
their pareto optimal asset holdings are priced factors. The corresponding risk prices λm(t)
differ by large investors risk aversion because investors with different risk aversion trade back
towards a pareto optimum at different rates. Whenever two or more large investors have the
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same risk aversion, their λm(t) will be identical. In the special case where all large investors
have the same risk aversion, because their λm(t) are identical, two-factor pricing will result.18

The factor model representation of asset returns shows that additional factors appear that
capture the effect of illiquidity on expected returns. Asset prices have a similar representa-
tion. The proof of the representation relies on the fact that investors risky asset holdings
converge to QW as T → ∞ (which implies risky asset prices converge to their competitive
equilibrium value PW ). Although I do not yet have a formal proof of this convergence, it
appears to be true in simulations.19 Assuming this convergence takes place, then risky as-
set prices when there is imperfect competition are similar to risky asset prices with perfect
competition but contain additional premia for suboptimal risk sharing due to illiquidity as
shown in the following proposition.

Proposition 6 Let P (Q(t), t, T ) denote the equilibrium risky asset price at time t when risky

asset holdings are Q(t), and when there are T − 1 periods in which the risky asset is traded.

Then, in the imperfect competition model of section 2, if limT→∞ limt→T−1Q(t) = QW , then,

lim
T→∞

P (Q(t), t, T ) =
D̄

r − 1
− ΩX

r
∑M

m=1(1/Am)
+

∞
∑

i=0

M
∑

m=2

(

1

r

)i+1

γm(t+ i)(Qm(t+ i) −QW
m ).

(18)

Proof: The proof is straightforward by solving equation (17) forward for P (Q(t), t, T ). See
the appendix for details. 2

Propositions 5 and 6 are related to the empirical asset pricing literature that treats returns
on portfolios of assets as factors—the Fama-French 3-factor model being one prominent
example. An issue within that literature is identifying why the returns on the portfolios are
priced. Proposition 5 points towards one explanation: the priced portfolios proxy for the
magnitude of imperfect risk sharing when asset markets are illiquid. It is the imperfect risk
sharing that is being priced.

Because risky asset holdings do adjust back to QW , the identified risk factors are transi-
tory; and their importance depends on their persistence. One measure of the persistence is
the effect that a deviation from pareto optimal risk holdings today has on future expected
one-period excess returns. Because asset prices and trades in the model are deterministic, at
any time t, assets τ period ahead one-period excess returns can be expressed as a function of
deviations from pareto optimal asset holdings at time t as shown in the following formula:20

P (t+ τ + 1) + D̄ − rP (t+ τ) = λXΩX +
M
∑

m=2

λm(t, τ)Ω(Qm(t) −QW
m ), (19)

18The factors are the market portfolio and
∑M

j=2
(Qm(t) − QW

m ).
19Urosevic (2002a) has a proof for convergence when all large investors have the same risk aversion. To

be the best of my knowledge he does not have a proof for the more general case.
20For a derivation, see corollary 5 in the appendix.
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where λm(t, τ) are τ period ahead risk factor prices. When these factor prices remain large
for high τ , then the corresponding risk factor has a substantial effect on returns at a τ period
horizon.

Simulation Analysis

To illustrate the importance that deviations from optimal risk sharing could have on asset
returns, I solved the model for risk prices and for forward risk prices when there are 6
investors who strongly vary in their risk aversion. The large investors risk aversion increases
with investor number so that investor 2 is the least risk averse and investor 6 is the most
risk averse. Additional details on this example are provided in section C of the appendix.
To solve for the risk prices, I solved the model while allowing for 2000 trading periods. The
length of each trading period is assumed equal to 1 day.

The risk prices from equation (17) measure the contribution that a deviation from optimal
risk sharing by investorm has on the next period’s asset returns. The risk prices vary through
time (Figure 1). The price of market risk is positive, as expected. The other prices of risk
are negative, which reflects the fact that if a large investor begins with more risky asset
than is pareto optimal, he will sell the assets back slowly to avoid liquidity costs, and hence
the marginal investor (the competitive fringe) bears less of the risk of holding those assets.
Consistent with my reasoning on the rates at which investors trade out of positions, the
market prices of risk are the more negative for large investors with the greater risk tolerances
because they prefer to sell more slowly to avoid liquidity costs. One puzzling aspect of the
risk prices is that they increase through time and eventually converge as the number of
remaining trading periods becomes small. The convergence occurs because the risk prices
measure how changes in current risky asset allocations affect the competitive fringe’s future
holdings. When there are very few, or in the limit no trading periods remaining, then the
risk prices become the same because there is no time over which the deviations from pareto
optimal asset holdings can be reversed. Similarly, the risk prices grow because investors
require more risk compensation when deviations from pareto optimal holdings cannot be
reversed.

To study the persistence of deviations from optimal risk sharing, I solved for forward
risk prices as of period 1, 000. The analysis confirms the intuition that the risk aversion of
the investors whose positions deviate from pareto optimal asset holdings strongly influences
the pattern of asset prices. If the positions of investors 3-6 deviate the effect on one-period
expected returns is significant for a period of at most 5 days (Figure 2, Panel A). By contrast,
a deviation by investor 2, the most risk tolerant large investor, has an effect on equilibrium
excess returns that persists for more than 500 days.

This analysis implies that the number of factors that appear to explain asset returns
depend on whether investors asset holdings were for some reason shocked away from a pareto
optimum. If asset holdings were not shocked away, then assets are only priced with a single
risk factor, the market portfolio. If instead all large investors asset holdings are shocked
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far enough away from pareto optimal holdings, then for short periods of time asset returns
will appear to have a multi-factor representation; in the case of the example there will be 5
factors. Because these factors vanish at different rates, eventually the assets in the example
will be priced as if there are 2-factors, and then after a very long time vanish back to 1 factor
pricing.

3.3 Contagion

In addition to using this analysis to better understand how asset pricing factors can appear
to be important at some times but not at others, the analysis also can be used to analyze
contagion. For example, a standard way of thinking about shock propagation in the contagion
literature is that some shocks originate within one asset class or market and then spread to
others. To model this phenomenon, suppose asset holdings are pareto optimal and then
a shock occurs for asset j which causes the reallocation of investors holdings of that asset
only. Any such reallocation can be expressed as a linear combination of basis shocks that
cause each large investors asset holdings to differ from his pareto optimal asset holdings.
Because the trajectory of asset holdings and asset price dynamics are linear in the basis
shocks (see the appendix), the propagation of shocks can be studied through basis shocks
alone. Additionally, because of linearity, it is sufficient to study the first derivative of assets’
excess return response to the basis shocks. Other assets price responses to basis shocks for
asset j are presented below:

Proposition 7 When investors asset holdings are initially pareto optimal, a perturbation

which drives large investor m′s holdings of asset j away from a pareto optimum in period t
while other large investors holdings are held fixed alters time t+ 1 asset returns by

∂(P (t+ 1) + D̄ − rP (t))

∂(Qm(j, t) −Qm(j)W )
= λm,tΩ[., j], (20)

and alters time t+ τ asset returns by

∂P (t+ τ + 1) + D̄ − rP (t+ τ)

∂(Qm(j, t) −Qm(j)W )
= λm(t, τ)Ω[., j], (21)

where Qm(j, t) is the j’th element of Qm(t) and Ω[., j] is the j’th column of Ω.

Proof: Straightforward by differentiating equations (17) and (19).

Because the effects of the shocks are proportional to the j’th column of Ω, the model
suggests that the price effects of the shocks have a “beta” representation. This is confirmed
below:
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Corollary 1 Let β[i, j] = Ω[i, j]/Ω[j, j], and let ∆Z[i, t + τ ] and ∆Z[j, t + τ ] denote the

expected excess return effects for assets i and j that result from a shock or shocks which

disrupt pareto optimal risk sharing for asset j. Then, for all 0 < τ < T − τ ,

∆Z[i, t+ τ ] = β[i, j]∆Z[j, t+ τ ] (22)

Proof: Straightforward from proposition 7.

Proposition 7 shows that the effect of basis shocks to investor m in market j has a
proportional effect on all other markets in future time periods. Therefore when a shock to
an investor has a long-lived effect on asset returns in market j it also has a long-lived effect
for all other assets. Because the persistence of shocks varies by investor, the model shows
that one reason that contagious shocks vary in the persistence of their effects on prices and
returns is differences in the risk preferences of the investors who were initially affected by
the shock.

The model makes strong predictions about the price and trading effects of shocks to
investors holdings of asset j. Corollary 1 shows that such shocks only affect the returns of
assets with correlated dividends. The trading volume implications are even stronger, and
in fact unrealistic. In the appendix I show that the equilibrium trades for each asset only
depend on whether holdings for that asset are pareto optimal, irrespective of the holdings
of other assets. This implies that a deviation from pareto optimal asset holdings for asset j
has no effect on trading volume for asset i.

Before closing, it is important to note that the contagion analysis focuses on restrictive
shocks that take the form of reshuffling investors’ asset holdings. If instead a cashflow shock
occurs that requires an investor to optimally sell assets in order to raise cash, then price
and trade effects will occur for many assets irrespective of dividend correlations. I hope to
study the effects of cashflow shocks in future work. The next section focuses on a simplified
variant of cashflow shocks in which a distressed investor sells his holdings in a single risky
asset. The contagious effects of such shocks are straightforward from corollary 1, therefore
the next section only focuses on the single asset case.

4 Distressed Asset Sales

This section studies the dynamics of asset prices and trades when market participants antic-
ipate future distressed sales by one participant. For simplicity, there is a single risky asset
and the setup is otherwise essentially the same as in the simulation analysis in section 3.2
except that there is a 7’th large investor in the model that serves as a device to introduce
distressed sales; his risk tolerance initially plays no role in the analysis, and is not explicitly
specified.

Investors in the model trade for 2200 periods starting from time -200. All investors initial
asset holdings are pareto optimal. At time 0, all investors learn a rumor that investor 7 will
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be forced to sell out his position at a constant rate during time periods 390 to 400, after which
he exits the market forever. For simplicity, it is assumed that investor 7’s position is locked
in and that he cannot trade until the specified time periods. For simplicity it is also assumed
that the rumor is true.21 The scenario of an investor who is forced to sell assets over several
periods when there is imperfect competition among the buyers is essentially the scenario
that is examined in Brunnermeier and Pedersen (2003), although as noted earlier there are
important differences between the models. The distressed asset sales can alternatively be
interpreted as the announcement of a seasoned equity issuance followed later by issuance at
the time of the distressed sales. The resulting price dynamics are qualitatively similar to
Newman and Rierson’s (2003) study of how bond spreads respond to additional issuance in
the European Telecommunications market.22

For purposes of contrast, I first analyze the effects of distressed sales when the asset
markets are perfectly competitive.

4.1 Competitive Benchmark

In the competitive economy, investors 1-6 are all price-takers. Because they also have CARA
utility, there is a representative investor, and equilibrium asset prices are set so that the
representative investor is willing to hold his risky asset endowment. Before time 0 and
during and after time 400, investors believe they will hold their risk asset allocations forever.
In the appendix, I show that equilibrium prices under these circumstances are set so that:

P (t) =
D̄

r − 1
− ΩX

r
∑7

m=1 1/Am

, t ≤ 0; (23)

and after investor 7 sells all of his assets and exits the market, prices are set so that:

P (t) =
D̄

r − 1
− ΩX

r
∑6

m=1 1/Am

, t ≥ 400 < T, (24)

where X is the outstanding supply of risky assets.

The only part of the price path which remains undetermined is the period between times
0 and time 399. During this period investors 1-6 are the only investors actively trading in
financial markets. Therefore, asset prices must provide them sufficient excess return per
period to compensate them for the risky assets they hold during the period, subject to the

21The long span of time between when investors learn of the rumor and when the sales occur is made for
the purposes of clarity of the figures. Price and trade dynamics are qualitatively similar when the time span
is shortened.

22Newman and Rierson focus on new issuance of telecom bonds that are close substitutes to outstanding
telecom bonds. The price dynamics reported below are similar to those for the outstanding telecom bonds
when a new issue occurs. This is because a new issue is a sufficiently close substitute to existing bonds, that
it is almost like a seasoned issue of the existing bonds from the standpoint of an investor.
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boundary condition that prices at time 400 are given by the expression in equation (24). This
requires that asset prices between periods t and t+1 must satisfy the difference equation:

P (t+ 1) + D̄ − rP (t) =
[1 − (1/r)]ΩX[1 : 6, t]

∑6
m=1(1/Am)

, 0 ≤ t ≤ 399, (25)

subject to the boundary condition (24), where X[1 : 6, t] is the net risky asset holdings that
investors 1-6 hold from time t to time t+ 1. These risky asset holdings change through time
because, for comparability with BP, the distressed seller is assumed to sell over multiple time
periods.

Solving for the competitive price path shows that the effect of the rumor causes compet-
itive asset prices to jump down to a new trajectory, and then to slowly decline until they
stabilize at a lower level (Figure 3). The rate of price decline is so slow that it is barely dis-
cernible in the figure. Because markets are perfectly liquid in the competitive equilibrium,
the future distressed sales do not create a basis for trade among investors 1-6, therefore
trading only occurs during those times when the distressed seller is selling.

4.2 Imperfect Competition

When asset market are imperfectly competitive the pattern of asset prices and trades depart
from those observed in the competitive case. Whether there is perfect or imperfect compe-
tition prices drop sharply on the rumor of future distressed sales, but prices drop by more
when there is imperfect competition, overshooting the competitive price path. Prices then
drift down until the asset sales have been completed, and then slowly recover back towards
the competitive price path (Figure 3). Intuition for price overshooting comes from static
models of imperfect competition in which nonprice taking agents reduce the price they pay
per unit by cutting back slightly on purchases. In a dynamic setting, investor 2, the most
risk tolerant large investor, contributes to lower asset prices by choosing to purchase tiny
amounts of distressed sales during the time they occur. Instead other investors absorb the
sales initially, and then sell to investor 2 over a long period of time (Figure 4).

The implications of the distressed sales for asset pricing come from from proposition 5.
Prior to the distressed sales, and after the distressed sales occur, asset prices satisfy the
CAPM when markets are perfectly competitive; additionally, during the period of distressed
sales returns satisfy a CAPM pricing relationship provided that asset supply is measured as
the float of outstanding assets held by investors 1-6. When markets are instead imperfectly
competitive, asset prices satisfy the CAPM before the distressed sales; but after the rumor,
liquidity considerations affect the price dynamics and CAPM-pricing breaks down. Between
the time of the rumor and the completion of the distressed sales, it is not clear whether
any factor model describes returns. After the distressed sales are completed, proposition 5,
shows that returns are temporarily priced by a multi-factor model. After investors trade
back to efficient asset holdings, assets will again be priced by the CAPM.
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When there is imperfect competition, distressed asset sales generate far more trading
volume than would occur with perfect competition. When markets are perfectly compet-
itive, and hence perfectly liquid, the distressed asset sales in each period are distributed
immediately to those investors who will ultimately bear the risk. Hence, the number of time
periods of trade is equal to the number of periods of distressed sales. When markets are
instead imperfectly competitive, the amount of trading volume at the time of the distressed
sales is the same as in the competitive case, but unlike the competitive case, because risk-
sharing is not efficient, there are thousands of periods of retrade long after the distressed
sales are over (Figure 4). Thus, imperfect competition generates significant trading volume
and persistence in trading volume.

Part of the trading activity that is generated by the distressed sales occurs before the
sales, and appears to be front-running. If front-running is defined as an investor choosing
to sell ahead of anticipated future asset sales, then investors 1, 2, and 4-6 front-run the
distressed sales once they learn about them at time 0 (Figure 4). In addition to front-running,
Brunnermeier and Pedersen discuss predatory trading, which occurs when large investors sell
at the same time as distressed investors. During the time over which the distressed sales
occur in figure 4, all other investors purchase from the distressed seller, so predatory trading
is not present although front-running is present. It is important to distinguish between the
definition of front-running that is used in this paper from the more standard understanding
of front-running. Traditionally, front-running occurs when a dealer or the dealers friends uses
the dealer’s private knowledge of his own customers sales to sell ahead of that orderflow to
uninformed buyers at high prices. By doing so, the front-runners not only take advantage of
uninformed buyers, but they also depress the prices that the distressed seller receives. Front-
running is unusual in this paper because there are no investors that have an informational
advantage. Instead, all investors are perfectly informed about the distressed sales before
they occur. I suspect that because investors are perfectly informed about the distressed
sales, the distressed sales do not create much of a basis for trade among the nondistressed
investors. Hence, the front-running trades are small relative to the amount of distressed
sales. If instead the front runners traded with uninformed buyers, then I expect the basis
for trade to be much greater because the front runners know they are getting a good deal,
and the uninformed buyers believe they are getting a good deal as well.

Because the front-running sales have a nontraditional interpretation, it is not ex ante
clear whether the front-running is simply the result of investors sharing the risks associated
with the future distressed sales (since the sharing of risks must involve one party selling to
another) or if the trades have the effect of reducing the revenue received by the distressed
seller. To examine this question, I solved for the price received by the distressed seller as a
function of the amount of warning time that other investors have that distressed sales are
coming. Presumably, if the trades are designed to take advantage of the distressed seller,
then more warning time should translate into lower prices when the distressed sales occurs.
For simplicity I assume that there is only one distressed trade at time 400. I found that
advance knowledge of the distressed sales does lead to a lower price for the distressed seller.
If the advance knowledge is interpreted as preannouncement of the distressed sales, as in the
Sunshine Trading literature, then this analysis shows that when trading is strategic, and all
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investors are rational, then preannouncement can harm the party that announces the trades
even if those trades are known to be uninformed.

Although prior knowledge of the distressed sales is detrimental to the interests of the
distressed seller in the example, the losses due to preannouncement are slight in the example
considered here. The advance warning of 400 time periods costs the distressed seller only
4 cents per share; and shorter warning times would cost the distressed seller even less.
Therefore, the costs imposed on the distressed seller from front-running are very small when
all investors have symmetric information about the distressed sales. The more important
cost to the distressed seller occurs because he has to sell into an illiquid market. The costs
of doing so are measured by the difference in the prices paid by the distressed seller versus
the prices he would have paid if markets were competitive. Examination of figure 3 shows
that this cost is about 85 cents per share.

4.3 Endowment Shocks

One of the unrealistic aspects of the distressed sales analysis is that the behavior of the
distressed seller is mechanical; the distressed seller does not choose an optimal trading strat-
egy given the liquidity that other investors in the market make available. A simple method
to examine distressed sales when distressed investors follow an optimal trading strategy is
to consider how one of the investors whose behavior is formally modelled respond to an
endowment shock that increases their holdings of risky assets. Following such a shock, the
investor will follow an optimal trading strategy in transferring part of their position to the
other investors in the model. For purposes of comparison, the size of the endowment shock
is equal to the quantity of distressed sales used to generate figures 3 and 4; and the shocks
are applied to large investor 2, the most risk tolerant large investor, and investor 6, the
least risk tolerant large investor. A comparison of price and trade dynamics reveals very
significant differences based on the identity of the investor who receives the shock. When
investor 6 is shocked, because he is very risk averse, he very rapidly sells off the risky assets
to other investors, eliminating most of his holdings within 4 trading periods (Figure 5, panel
F). When instead investor 2 is shocked, because he is less risk averse than investor 6, he
instead sells slowly through time to minimize the price impact of his trades (Figure 7, panel
B). Because investor 6 sells rapidly, prices overshoot their competitive equilibrium values
(not shown). By contrast, because investor 2 only transfers risk to other investors slowly
through time, prices undershoot the competitive price path (Figure 6).

Whether or not front-running like behavior is present also depends on the identity of
the investor who receives the endowment shock. Because investors have no notice of the
endowment shocks, any sales that are made by large investors occur simultaneously with the
distressed sales of the investor who receives the shock. When other investors sell at the same
time as the distressed seller, then Brunnermeier and Pedersen define the trading behavior as
predatory. Based on their definition, predatory trading occurs when investor 2 is shocked,
but not when investor 6 is shocked. I don’t have strong intuition for why this behavior occurs
at some times but not at others. However, differences in the price dynamics help to provide
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some intuition. When there is an endowment shock to investor 2, the risky assets equilibrium
expected excess returns are actually lower than they would be with perfect competition, and
the one period expected excess returns decline over time. When excess returns decline over
time, one would expect price-taking investors to slowly sell through time, as they do, and it
not unreasonable to believe that other investors might as well. By contrast, when investor 6
is shocked, risky assets expected excess returns are higher than those along the competitive
price path, which should encourage other investors to buy risky assets instead of selling
them.23

4.4 Optimal Liquidations

An alternative method for modelling distressed sales is to assume that investor 7 (the dis-
tressed seller) follows an optimal trading strategy when liquidating his position. To do so, I
assume that all investors at time 0 learn that one large investor must liquidate his risky asset
holdings by time 400 and then exit the market forever. For purposes of comparability with
other distressed investor analysis in the model, the distressed investor has CARA utility of
consumption and is infinitely lived. Additionally, the distressed investors risk tolerance is
chosen so that other investors asset holdings at time 0 are pareto optimal and equal to that
in the earlier distressed investor analysis, and so that the distressed investors risky asset
endowment is equal to the total distressed sales in my earlier analysis.

The distressed investors’ problem of maximizing utility subject to liquidating his position
by a specified date is the subject of the optimal liquidation literature [Bertsimas and Lo
(1998), Almgren and Chriss (2000), Subramanian and Jarrow (2001), Subramanian (2000),
and others]. To the best of my knowledge, all papers in that literature model liquidations in
a partial equilibrium setting in which the price impact function for the liquidating investors
trades is exogenously specified. The unique aspect of my analysis of optimal liquidations is
that the price impact function is endogenously determined by the behavior of other investors
in the market, and their knowledge that optimal liquidations will take place. I do not yet
have theorems about how the model behaves when there are optimal distressed sales; all
results are based on simulations.

In the baseline distressed investor example, when the distressed investor can optimize his
sales, the resulting path of prices and trades is qualitatively different than when his sales
are concentrated at time 400. The main difference is that prices overshoot the competitive
price-path by less when distressed sales are optimal than when they are concentrated (Figure
8). Furthermore, the minimal front-running that was present when distressed trades were
concentrated vanishes when distressed sales are optimal; instead, the distressed seller begins
selling immediately upon news that he must liquidate and all of the other investors purchase
assets immediately and along nearly the entire price path (Figure 10).24

23Graphs of the excess returns are not included in the paper.
24For reasons that are not yet clear, the distressed seller purchases a small quantity of risky asset just

before liquidating his position. I am investigating this further.

22



The trades of the liquidating investor are of independent interest. When there is a
distressed investor and markets are illiquid, intuition suggests that the distressed investor
should break up his sales to minimize price impact, but doesn’t specify how to do so; for
example should liquidations occur through a large number of small trades, or a small num-
ber of large trades? In the example, the optimal liquidation strategy involves selling large
amounts of risky assets at times 0 and 400 and dribbling out small additional amounts of
risky asset during the periods in between (Figure 9). Additional simulations reveal that
the optimal liquidation strategy depends on market structure as measured by how the risk
bearing capacity of the other investors in the economy is distributed among the remaining
investors. Intuitively, when the economy’s risk bearing capacity is evenly dispersed among
many large investors the market will be more competitive than when risk bearing capacity
is concentrated among a smaller number of investors. I find that the concentration of risk
bearing capacity among the other investors affects the path of optimal liquiations. At the
extreme in which markets are very competitive, the liquidating investor holds all of his assets
until time 400 and then liquidates it all at once (not shown). In the other extreme, when
markets are highly uncompetitive, the liquidating investor sells a lot at time 0, and the rest
at time 400, but sells little or nothing in between (not shown). Much more analysis can be
done on optimal liquidations in this framework; I hope to purse this topic in future work.

To close this section, I would like to compare the results in this section with those in
Brunnermeier and Pedersen (BP). Recall that BP’s model generates both front-running as
well as predatory trading, where predatory trading involves some large investors selling at
the same time as the distressed investor. My principal criticisms of the BP model is that it
contains an investor whose demand curve for risky assets is not derived from first principles;
and the model makes strong assumptions about constraints on long and short positions, on
the transaction costs technology, and on the feasible trading strategies of the liquidating
investor. These assumptions raise the question of whether their results on front-running
and predatory trading are consistent with a framework in which all investors optimize. The
basic answer provided by the analysis here is a qualified yes. The main qualification is
that front-running and predatory trading have small effects on trades and prices when other
participants are aware of the distressed sales and optimize to account for the them. I suspect
the reason that front-running and predatory trading have small price effects is because there
is little basis for investors to engage in these activities when all investors anticipate the future
distressed sales.

Based on the above, my interpretation of the results in BP is that their model describes
equilibrium when knowledge of the distressed sales is not widely known, and in particular
is not known by the buyers who take the other side of the front-runners’ trades. My results
also suggest that the primary reason that distressed sellers do not want knowledge of their
distress to be widely known is not because they fear front-running or predatory trading, but
rather that they fear losing the opportunity to sell at a high price to buyers who are unaware
of their distress.

When all investors are aware of the distressed seller, the losses suffered by the distressed
seller are related to the severity of the imperfect competition in asset markets, which in turn
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depends on market structure, as measured by the distribution of the market’s risk bearing
capacity across the investors in the market, and on market liquidity. These subjects are
addressed in the next section.

5 Liquidity and Market Structure

In section 3.2, I established that when markets are imperfectly competitive, the distribution
of risk tolerances across investors influences equilibrium asset prices and risk sharing. In
this section, I study how the distribution of risk bearing capacity across investors influences
market liquidity. Recall that in this CARA economy, the eonomy’s total risk bearing capacity
is the sum total of investors risk tolerances,

∑M
m=1(1/Am). I interpret the distribution of

risk tolerances across investors as the economy’s market structure. This notion of market
structure captures differences in the ideal size of investors positions as measured by their asset
holdings when risk sharing is pareto optimal. For example, if an investor has x percent of the
economy’s risk bearing capacity, then it should optimally hold x percent of the economy’s
risk. If large investors are interpreted as agents for smaller investors, then the large investors
risk bearing capacity is representative of the number of investors who placed their assets
with the large investor; i.e. abstracting from differences in small investors risk preferences
a large mutual fund family is likely to have more risk bearing capacity than a small mutual
fund.

There are many possible ways to define and measure liquidity. I consider three simple
measures. The first measure is the price discount that a distressed seller pays by selling into
an imperfectly competitive (illiquid) market instead of into a perfectly competitive liquid
market. The second is the liquidity that large investors receive from the competitive fringe
of small investors. This second measure is the slope of the price schedule that large investors
face when choosing their risky asset holdings, as given in equation (9). It is in some sense
comparable to the λ coefficient measure of liquidity in Kyle (1985), or to to the bid-ask
spread. A deficiency of slope as a liquidity measure is that is only based on the fringe’s
willingness to absorb orderflow from a large investor: it holds the behavior of other large
investors as fixed. The third measure remedies this deficiency by measuring the immediate
price impact that occurs when one large investor has to (for unmodeled exogenous reasons)
immediately sell 1 share of his asset holdings to the competitive fringe and other large
investors. This price impact measure is most sensible when investors have no other basis for
trade that might confound the price impact computations. Therefore, I compute the third
measure when investors asset holdings are pareto optimal.25

To study the importance of market structure in determining the liquidity received by a
distressed seller, I normalized the economy’s annualized total risk bearing capacity to 1, and
then studied the effects that different market structures have on the prices received by the
distressed seller in the example used in section 4, but for simplicity I assumed that all asset

25See section B.8 of the appendix for details.
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sales occur at time 400.26 In all simulations, the competitive fringe was allocated 10 percent
of the risk bearing capacity and the 5 large investors received 90 percent. The risk bearing
capacity of the large investors was chosen to be geometically declining in investor number,
i.e. (1/Am+1) = ρ(1/Am) where ρ ∈ (0, 1) subject to the constraint that large investors total
risk bearing capacity was 90 percent. This parameterization admits all of the large investors
risk bearing capacity held by one large investor and the risk bearing capacity shared equally
by large investors as limiting cases.

In the above parameterization of market structure, the fraction of risk bearing capacity
held by the most risk tolerant large investor is a sufficient statistic for the market structure.
As expected differences in market structure have a very significant effect on the liquidity
cost to the distressed investor. When 60% of the large investors risk bearing capacity is held
by investor 2, as it is in the analysis in figure 3, then the liquidity cost to the the distressed
investor is about 90 cents per share. If instead 90% of the large investors risk bearing capacity
were held by investor 2, then the liquidity cost would have been dramatically higher, at $7.75
per share, which is 150% greater than the total price impact of the distressed trades in a
competitive environment. On the other hand, if investor 2 only held 50% of the large investors
risk bearing capacity, then the liquidity cost is reduced to 0.23 cents, and grows smaller yet
as the distribution of risk bearing capacity grows more even. The risk bearing capacity of
the competitive fringe also affects the liquidity received by the distressed investor. If the risk
bearing capacity of the fringe expands, and the total capacity of the large investors shrinks,
then the market becomes more competitive and more liquid. The risk-free rate of interest
also affects equilibrium liquidity. Simulations show that when the riskfree real rate is fixed
at 4 percent instead of 2 percent, then the price discount for illiquidity shrinks. Intuition
for this result comes from noting that large investors excercise their market power over a
distressed seller by holding back on their purchases at the time of the distressed sale so that
they can later acquire the assets from other investors at depressed prices. At higher levels
of interest rates, the revenues from following this strategy are discounted at a greater rate,
which reduces the benefit from delaying purchases, and erodes large investors market power,
causing the price discount to shrink.

The second and third liquidity measures are investor-specific: they measure the amount
of liquidity that is available to each large investor. A surprising features of the model is that
liquidity varies by large investor. For both liquidity measures, in almost all time periods of
the model, liquidity is monotone decreasing in investors risk tolerance: the more risk tolerant
a large investor the less liquidity that he receives (Figure 11 for the measure 2, not shown for
measure 3). Investor 2, the most risk tolerant of the large investors receives far less liquidity
than the other investors. Partial intuition for the slope result comes from noting that the
slope at a point in time measures the change in the competitive fringe’s valuation of the
risky asset when some of that asset is transferred from the fringe to a large investor. In a
dynamic setting, the change in the fringe’s marginal valuation depends on the future trading
strategy of the large investor who buys the asset. If the large investor is very risk averse,

26The normalization of aggregate risk tolerances to 1 scales equilibrium risk premia, which are homogeneous
of degree -1 in investors risk tolerances, but has no effect on equilibrium trades which are homogeneous of
degree 0 in investors risk tolerances.
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one might expect the large investor to quickly sell the asset back to the fringe again. In this
case a point in time purchase by a very risk tolerant investor has only a small effect on the
fringe’s marginal valuation. Conversely, if the investor is very risk tolerant, then he will hold
the asset for a longer time, which means a sale to a very risk tolerant large investor has a
greater effect on the fringe’s marginal valuation.

Partial intuition for results using the third measure comes from noting that the price
impact is measured when risk is transferred from one investor to the other investors in the
model. When the most risk tolerant large investor transfers risk to other less risk tolerant
large investors, one should expect a bigger price move because the less risk tolerant investors
should require a bigger premium to temporarily take on the additional risk.

It must be emphasized that the intuition for the results on liquidity for individual in-
vestors is incomplete because the monotone relationship between risk tolerances and large
investors’ liquidity breaks down after period 1600. I suspect that the breakdown occurs
because the opportunities to avoid liquidity costs by breaking up trades diminish when the
last period of trade is approached.

I have also investigated the relationship between liquidity for large investors and uncer-
tainty over the quantity of distressed sales (see section B.6 of the appendix). In the proof of
proposition 10, I show that the slope measure of liquidity for each large investor has form:

βm(t) = fm(A1, . . . , Am, t) × Ω,

where fm(.) is a scalar function of market structure and time. The expression for slope
suggests that price impact per share depends on both market structure and uncertainty
about dividends. This suggests that if there is price uncertainty caused by uncertainty
about the quantity of distressed sales, then it should increase slope and thus reduce liquidity
per share. Simulations of the model show that price uncertainty does reduce liquidity for
a period of time before the distressed sales; however, for some model parameterizations I
find that uncertainty about future distressed sales can reduce the slope coefficient in earlier
periods of the model; i.e. future uncertainty can sometimes increase current liquidity. This
result is contrary to intuition and suggests that the relationship between liquidity and market
conditions is an extremely complicated topic, even within this stylized model.

To conclude this section, I want to emphasize that the rich patterns of liquidity that
are generated in the model are especially intriguing because they are not dependent on
differences in investors information, or on noise trading. Instead, they are based upon
strategic considerations and differences in investors risk preferences. I would also like to
emphasize that fully characterizing and comprehending the patterns of liquidity in the model
remain a subject of ongoing research.
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6 Summary and Conclusions

A large share of financial assets are held and traded by large institutional investors whose
desired orderflow is large enough that they account for the price impact of the orderflow
when trading. This paper studied the effects of large investors on asset pricing, contagion,
liquidity, and market function during times of asset sales by distressed market participants.
Our primary results show that when large investors asset holdings are pareto efficient, then
asset prices and asset returns are the same as they would be in a competitive economy, but
that if there are shocks that push investors holdings away from a pareto optimum, then
competitive asset pricing relationships break down and additional risk factors that proxy for
imperfect risk sharing due to illiquidity are needed to price all assets. An important feature of
the model is that the length of time that pricing models break down is related to the identities
of the investors that are shocked, as well as market structure where market structure is
measured by cross-sectional differences in large investors capacity for bearing risk. Although
market structure is an important determinant of shock absorption and transmission, this
paper has only examined a very limited set of market structures. In future work, I plan to
examine the implications of more complicated market structures for asset returns.
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Appendix

A Notation

There are M investors and N risky assets. Q(t) denote the NM × 1 vector of all investors
risky asset holdings at time t where

Q(t) =







Q1(t)
...

QM(t)






.

Q1(t) represents the net asset holdings of a continuum of infinitesimal small investors
indexed by s:

Q1(t) =

∫ 1

0

Qs(t)µ(s)ds.

The small investors are often collectively referred to as the competitive fringe. Q2(t) through
QM(t) denotes the net asset holdings of large investors, and is denoted by the N × (M − 1)
vector QB(t). The change investors risky asset holdings from the beginning of time period
t to the beginning of time period t + 1 is denoted by the NM × 1 vector ∆Q(t). Similarly,
∆Q1(t) and ∆QB(t) denote the change in the competitive fringe’s asset holdings, and the
change in the asset holdings of the large investors.

The algebra which follows requires many summations. Rather than write summations
explicitly, I use the matrix S = ι′M ⊗ IN to perform summations where ιM is an M by 1
vector of ones, and IN is the N × N identity matrix.27 In some cases, the matrix S may
have different dimensions to conform to the vector whose elements are being added. In all
such cases, S will always have N rows. The matrix Si is used for selecting submatrices of a
larger matrix. Si has form

Si = ι′i,M ⊗ IN ,

where ιi,M is an M vector has a 1 in its i’th element, and has zeros elsewhere.28 As above Si

will sometimes have different dimensions to conform with the matrices being summed, but
it will always have N rows.

In the rest of the exposition, I will occasionally suppress time subscripts to save space.

27For example, SQ(t) =
∑M

m=1
Qm(t)

28To illustrate the use of the selection matrix, Qm(t) = SmQ(t).
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B Proofs

Let P (Q, t) denote the equilibrium function for prices during time t when investors enter
period t with risky asset vector Q. The distribution of dividends in time period t is known
for all t and has form:

D(t) ∼ N (D̄,Ω) (A1)

To establish backwards induction in the proofs, I will use the more general form:

D(t) ∼ N [D̄,Ω(t)] (A2)

where, Ω(t) is a deterministic function of time. In periods t = 1, . . . T−1, Ω(t) = Ω. In period
T and after, there is no more trade in risky assets, and Ω(T ) 6= Ω. However, this distinction
is immaterial since the induction only requires that the value function be expressible in the
form in the proposition below. The proposition is given in section 2.4 of the text, and is
restated below:

Proposition 2: Small investors value functions for entering period t with asset holdings Qs

and qs when the economy’s vector of risky asset holdings at time t is Q is given by:

Vs(qs, Qs, Q, t) = −Ks(t) F (Q, t) e−As(t)qs(t)−As(t)Q′

s(D̄+P (Q,t))+.5As(t)2Q′

sΩ(t)Qs ,

where F (Q, t) = e−Q′v̄1(t)− 1
2
Q′θ1(t)Q

P (Q, t) = 1
r
(α(t) − Γ(t)Q).

(11)

Additionally, large investor m’s value function for entering period t when the state variable

is Q and his holdings of riskfree assets are qm is given by:

Vm(qm, Q, t) = −Km(t)e−Am(t)qm(t)−Am(t)Q′

mv̄m(t)+.5Am(t)2Q′θm(t)Q. (12)

Proof: The proof is by induction. Part I of the proof establishes that if the value function
has this form at time t, then it has the same form at time t−1. Part II of the proof establishes
the result for time T , the first period in which trade cannot occur.

B.1 Part I:

Suppose the form of the value function is correct for time t. Then, to establish the form
of the value function at time t − 1, I first solve for the competitive fringe’s demand curve
for absorbing the net order flow of the large investors. I then solve the large investors and
competitive fringe’s equilbrium portfolio and consumption choices, and then solve for the
value function at time t− 1.
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The competitive fringe’s demand curve

The competitive fringe represents a continuum of infinitesimal investors that are distributed
uniformly on the unit interval with total measure 1, i.e. µ(s) = 1 for s ∈ [0, 1]. At time
t− 1, each participant s of the competitive fringe solves:

max
Cs(t− 1),

∆Qs(t− 1),
∆qs(t− 1)

−e−AsCs(t−1) − δVs(qs(t), Qs(t), Q(t), t) (A3)

subject to the budget constraint:

Cs(t− 1) + ∆Q′
sP (., t− 1) + ∆qs(t− 1) = Qs(t− 1)′D(t− 1) (A4)

where,

qs(t) = r(qs(t− 1) + ∆qs(t− 1)), (A5)

Qs(t) = Qs(t− 1) + ∆Qs(t− 1), (A6)

Q(t) = Q(t− 1) + ∆Q(t− 1), (A7)

and P (., t−1) represents the equilibrium price vector for the risky assets at time t−1. Using
the budget constraint to solve for ∆qs(t−1), and then plugging the result into equation (A5)
to solve for qs(t), and then plugging the solution for qs(t) into the value function transforms
the small investors problem into the following unconstrained problem:

max
Cs(t− 1),
∆Qs(t− 1)

−e−AsCs(t−1) −
(

δK1(t) F (Q, t) e−As(t)r[qs(t−1)+Qs(t−1)′(D(t−1)+P (.,t−1))−Cs(t−1)]

×eAs(t)r[Qs(t−1)+∆Qs(t−1)]′P (.,t−1) (A8)

× e−As(t)(Qs(t−1)+∆Qs(t−1))′(D̄+P (Q,t))+.5As(t)2(Qs(t−1)+∆Qs(t−1))′Ω(t)(Qs(t−1)+∆Qs(t−1))′
)

Since the first line of the unconstained maxization problem depends on Cs(t− 1) but not
∆Qs(t− 1), and since the later lines don’t depend on Cs(t− 1), consumption and portfolio
trades ∆Qs(t− 1) can be chosen separately. Solving for ∆Qs(t− 1) shows:

∆Qs(t− 1) =
1

As(t)
Ω(t)−1

(

D̄ + P (Q, t) − rP (., t− 1)
)

−Qs(t− 1) (A9)

Integrating both side of the above equation with respect to µ(s) generates the net demand
of the competitive fringe:
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∆Qs(t− 1) =
∫ 1

0
∆Qs(t− 1)µ(s)ds

= 1
A1(t)

Ω(t)−1
(

D̄ + P (Q, t) − rP (., t− 1)
)

−Q1(t− 1)
(A10)

where,
1

A1(t)
=

∫ 1

0

1

As(t)
µ(s)ds

and

Q1(t− 1) =

∫ 1

0

Qs(t− 1)µ(s)ds.

The Price Schedule Faced by Large Investors

The price schedule faced by large investors maps the desired orderflow of large investors
into the prices at which the competitive fringe is willing to absorb the large investors net
orderflow. To solve for the price schedule, I solve for prices P (., t−1) in equation (A10) such
that when the large investors choose trade ∆QB(t − 1) at time t-1, then the competitive
fringe chooses trade −S∆QB(t− 1).

Rearranging, equation (A10) shows:

P (., t− 1) =
1

r

(

D̄ + P (t, Q(t)) − A1(t)Ω(t)[Q1(t− 1) + ∆Q1(t− 1)]
)

=
1

r

(

D̄ + P (t, Q(t− 1) + ∆Q(t− 1)) − A1(t)Ω(t)[Q1(t− 1) + ∆Q1(t− 1)]
)

Substituting −S∆QB(t− 1) for ∆Q1(t− 1), and noting that

P (t, Q(t)) =
1

r
(α(t) − Γ(t)Q(t))

then shows that the price schedule has form:

P (., t− 1) =
1

r
(β0(t− 1) − βQ(t− 1)Q(t− 1) − βQB

(t− 1)∆QB(t− 1)) , (A11)

where,

β0(t− 1) = D̄ + (1/r)α(t) (A12)

βQ(t− 1) = (1/r)(Γ(t) + rA1(t)Ω(t)S1) (A13)

βQB
(t− 1) = (1/r)Γ(t)

(

−S
I

)

− A1(t)Ω(t)S (A14)

Given the price schedule in equation (A11), large investors at time t− 1 solve the maxi-
mization problem:
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Large Investors Maximization Problem

max
Cm(t− 1),

∆Qm(t− 1),
∆qm(t− 1)

−e−AmCm(t−1) − δVm(qm(t), Q(t), t) (A15)

subject to the budget constraint:

Cm(t− 1) + ∆Qm(t− 1)′P (., t− 1) + ∆qm(t− 1) = Qm(t− 1)′D(t− 1) (A16)

where P (., t− 1) in the budget constraint is the price schedule from equation (A11).

After substituting the budget constraint into the value function, and writing Q(t), and
Qm(t− 1) as Q+ ∆Q, and Qm, the m’th large investors maximization problem becomes:

max
Cm(t−1),∆Qm

−e−AmCm(t−1) − δ {km(t) × exp (−rAm(t)[qm(t− 1) +Q′
mD(t− 1) − Cm(t− 1)])

× exp
(

−Am(t)(Q+ ∆Q)′v̄m(t) + .5Am(t)2(Q+ ∆Q)′θm(t)(Q+ ∆Q) + rAm(t)∆Q′
mP (., t− 1)

)}

.

(A17)

Examination of the maximand shows that the the large investors portfolio choices can
be solved for before choosing optimal consumption. Each large investor chooses ∆Qm while
taking the choices of the other large investors as given. Each large investor in choosing ∆Qm

accounts for the effect of his choices on price, and on the asset holdings of investor 1 since
by construction ∆Q1 = −S∆Qm. The first order condition for large investor m has form:

0 = −Am(t)[(−S1+Sm)v̄m(t)] + Am(t)2(−S1 + Sm)[(θm(t) + θm(t)′)/2](Q+ ∆Q)

+ Am(t) [rP (., t− 1) − SmβQB
(t− 1)′Sm∆QB] ,

(A18)

After substituting for P (., t−1) from equation (A11), writingQ+∆Q asQ+

(

−S∆QB

∆QB

)

and simplifying, this produces the following reaction function for large investor m:

πm(t− 1)∆QB = χm(t− 1) + ξm(t− 1)Q, (A19)

where,

πm(t− 1) =Am(t)(−S1 + Sm)[(θm(t) + θm(t)′)/2]

(

−S
I

)

− βQB
(t− 1) − SmβQB

(t− 1)′Sm

(A20)
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χm(t− 1) = (−S1 + Sm)v̄m(t) − β0(t− 1) (A21)

ξm(t− 1) = βQ(t− 1) − Am(t)(−S1 + Sm)[(θm(t) + θm(t)′)/2] (A22)

Stacking the (M-1) reaction functions produces a system of (M − 1)N linear equations
in (M − 1)N unknowns:

Π(t− 1)∆QB(t− 1) = χ(t− 1) + ξ(t− 1)Q(t− 1) (A23)

Assume that Π(t−1) is invertible. Then the solution for ∆QB(t−1) is unique, and given
by

∆QB(t− 1) = Π(t− 1)−1χ(t− 1) + Π(t− 1)−1ξ(t− 1)Q(t− 1) (A24)

Equilibrium Asset Holdings

The solution for ∆Q1(t − 1) is −S∆QB(t − 1). Therefore, the solution for ∆Q(t − 1) =
(∆Q1(t− 1)′,∆QB(t− 1)′)′ can be written as:

∆Q(t− 1) = H0(t− 1) +H1(t− 1)Q(t− 1). (A25)

where,

H0(t− 1) =

(

−SΠ(t− 1)−1χ(t− 1)
Π(t− 1)−1χ(t− 1)

)

, and H1(t− 1) =

(

−SΠ(t− 1)−1ξ(t− 1)
Π(t− 1)−1ξ(t− 1)

)

.

(A26)

With the above notation, the equilibrium purchases by large participant m in period t−1
are given by

∆Qm(t− 1) = Sm[H0(t− 1) +H1(t− 1)Q(t− 1)] (A27)

Additionally, the equilibrium transition dynamics for beginning of period risky asset
holdings are given by:

Q(t) = G0(t− 1) +G1(t− 1)Q(t− 1) (A28)

where G0(t− 1) = H0(t− 1) and G1(t− 1) = H1(t− 1) + I.

Equilibrium Price Function

Recall that the equilibrium price function in each time period maps investors beginning of
period holdings of risky assets to an equilibrium price after trade. The equilibrium price
function for period t − 1 is found by plugging the solution for large investors equilibrium
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trades from equation (A24) into the price schedule faced by large investors (equation (A11)).
The resulting price function for period t− 1 has form:

P (t− 1, Q) =
1

r
(α(t− 1) − Γ(t− 1)Q) (A29)

where,

α(t− 1) = β0(t− 1) − βQB
(t− 1)π(t− 1)−1χ(t− 1) (A30)

Γ(t− 1) = βQ(t− 1) + βQB
(t− 1)π(t− 1)−1ξ(t− 1) (A31)

Large Investors Consumption

Large investors optimal time t− 1 consumption depends on optimal time t− 1 trades. After
plugging the expressions for equilibrium prices, and equilibrium trades [equations (A28),
(A29), and (A25)] into equation (A17), large investors consumption choice problem has
form:

max
Cm(t−1)

−e−AmCm(t−1) − δkm(t)erAm(t)Cm(t−1) ×ψm(Q(t− 1), qm(t− 1), D(t− 1), t− 1), (A32)

where

ψm(Q, qm, D(t− 1),t− 1) =

e−Am(t)r(qm(t−1)+Qm(t−1)′D(t−1))

×e−Am(t)r[Sm(H0(t)+H1(t)Q)(t−1)]′(α(t−1)−Γ(t−1)Q(t−1))/r

×e−Am(t)(G0(t)+G1(t)Q(t−1))′v̄m(t)+.5Am(t)2(G0(t)+G1(t)Q(t−1))′θm(t)(G0(t)+G1(t)Q(t−1))

(A33)

The first order condition for choice of optimal consumption implies that optimal con-
sumption is given by:

Cm(t− 1) =
−1

Am(t)r + Am

ln

(

δkm(t)Am(t)rψm(Q(t− 1), qm(t− 1), D(t− 1), t− 1)

Am

)

(A34)

Large investors value function at time t− 1

Define Vm(t − 1, D(t − 1), Q, qm) as the value function to large investor m from entering
period t− 1 when the vector of risky asset holdings is Q, and his riskless asset holdings are
qm, and the dividend realization at time t − 1 is D(t − 1). After substituting the optimal
consumption choice in (A34) into equation (A32), this value function is given by:

Vm(qm, Q, t− 1, D(t− 1)) = −
[

1 + r∗m(t)

r∗m(t)

]

[δkm(t)r∗m(t)ψm(Q, qm, D(t− 1), t− 1)]
1

1+r∗m(t)

(A35)
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where,
r∗m(t) = Am(t)r/Am (A36)

Taking the expectation of the value function in equation (A35) with respect to the dis-
tribution of D(t − 1) then produces Vm(qm, Q, t − 1), which is the value to large investors
2, . . .M from entering period t − 1 when the distribution of risky asset holdings is Q and
investor m’s holdings of riskfree assets are qm:

Vm(qm, Q, t− 1) = −km(t− 1) × e−Am(t−1)qm−Am(t−1)Q′v̄m(t−1)+.5Am(t−1)2Q′θm(t−1)Q (A37)

where the parameters of the value function at time t−1 are given by the following Riccati
difference equations.

Am(t− 1) = Am(t)r/(1 + r∗m(t)) (A38)

km(t− 1) =

[

r∗m(t) + 1

r∗m(t)

]

[δkm(t)r∗m(t)]
1

1+r∗m(t)

× eAm(t−1)H0(t−1)′S′

mα(t−1)/r−Am(t−1)G0(t−1)′v̄m(t)/r+.5Am(t−1)2((1+r∗m(t))/r2)(G0(t−1)′θm(t)G0(t−1))

(A39)

v̄m(t− 1) =S ′
mD̄ −H1(t− 1)′S ′

mα(t− 1)/r + Γ(t− 1)′SmH0(t− 1)/r +G1(t− 1)′v̄m(t)/r

− Am(t− 1)(1 + r∗m(t))G1(t− 1)′
(

θm(t) + θm(t)′

2

)

G0(t− 1)/r2

(A40)

θm(t−1) =
−2H1(t− 1)′S ′

mΓ(t− 1)

rAm(t− 1)
+(1+r∗m(t))G1(t−1)′θm(t)G1(t−1)/r2 +S ′

mΩ(t−1)Sm

(A41)

Small investors optimal consumption

The solution for each small investors consumption depends on small investors optimal trades
(equation (A9)) after substituting in the equilibrium price function P (Q, t − 1) for P (., t −
1). The other determinants of the small investors consumption is the post-trade vector of
risky asset holdings, Q(t − 1) + ∆Q(t − 1), and equilibrium prices [equations (A28) and
(A29)]. Substituting these expressions into equation (A8), small investors consumption
choice problem has form:

max
Cs(t−1)

−e−AsCs(t−1)−δks(t)e
rAs(t)Cs(t−1)×ψs(Q(t−1), Qs(t−1), qs(t−1), D(t−1), t−1), (A42)
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where,

ψs(Q(t− 1), Qs(t− 1),qs(t− 1), D(t− 1), t− 1) =

e−As(t)r{qs(t−1)+Qs(t−1)′[P (t−1,Q(t−1))+D(t−1)]}

×e−.5{D̄+P [t,Q(t−1)+∆Q(t−1)]−rP [t−1,Q(t−1)]}′Ω(t)−1{D̄+P [t,Q(t−1)+∆Q(t−1)]−rP [t−1,Q(t−1)]}

×e−[G0(t−1)+G1(t−1)Q(t−1)]′v̄s(t)−.5[G0(t−1)+G1(t−1)Q(t−1)]′θs(t)[G0(t−1)+G1(t−1)Q(t−1)]

(A43)

The first order condition for choice of optimal consumption implies that optimal con-
sumption is given by:

Cs(t−1) =
−1

As(t)r + As

ln

(

δks(t)As(t)rψs(Q(t− 1), Qs(t− 1), qs, D(t− 1), t− 1)

As

)

(A44)

Small investors value function at time t− 1

Define Vs(qs(t− 1), Qs(t− 1), t− 1, D(t− 1)) as the value function to small investor s from
entering period t − 1 when the vector of risky asset holdings is Q(t − 1), and his risky and
riskless asset holdings are Qs(t−1) and qs(t−1), and the dividend realization at time t−1 is
D(t− 1). After substituting the optimal consumption choice in (A44) into equation (A42),
this value function is given by:

Vs(qs(t− 1),Qs(t− 1), Q(t− 1), t− 1, D(t− 1)) =

−
[

1 + r∗s(t)

r∗s(t)

]

[δks(t)r
∗
s(t)ψs(Q(t− 1), Qs(t− 1), qs(t− 1), D(t− 1), t− 1)]

1
1+r∗s (t)

(A45)

where,
r∗s(t) = As(t)r/As (A46)

Taking the expectation of the value function function with respect to the distribution of
D(t− 1) produce the value function to a small investor from entering period t− 1 with asset
holdings qs and Qs when the vector of all investors asset holdings is given by Q:

Vs(qs, Qs, Q, t− 1) = −Ks(t− 1) F (Q, t− 1) e−As(t−1)qs(t−1)−As(t−1)Q′

s(D̄+P (Q,t−1))+.5As(t−1)2Q′

sΩ(t−1)Qs ,

where F (Q, t− 1) = e−Q′v̄s(t−1)− 1
2
Q′θs(t−1)Q

P (Q, t− 1) = 1
r
(α(t− 1) − Γ(t− 1)Q).

(A47)

The parameters in the small investors value functions at time t−1 are a function of time
t parameters as expressed in the following Riccati equations:

As(t− 1) =
rAs(t)

1 + r∗s(t)
(A48)
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ks(t−1) =

[

r∗s(t) + 1

r∗s(t)

]

[

δks(t− 1)r∗s(t)e
−.5a0(t−1)′Ω(t)−1a0(t−1)−G0(t−1)′v̄s(t)−.5G0(t−1)′θs(t)G0(t−1)

] 1
1+r∗s (t)

,

(A49)
where,

a0(t− 1) = D̄ +
1

r
[α(t) − Γ(t)G0(t− 1)] − α(t− 1) (A50)

v̄s(t−1) =
a1(t− 1)′Ω(t)−1a0(t− 1) +G1(t− 1)′v̄s(t) +G1(t− 1)′[(θs(t) + θs(t)

′)/2]G0(t− 1)

1 + r∗s(t)
,

(A51)
where,

a1(t− 1) = Γ(t− 1) − 1

r
Γ(t)G1(t− 1). (A52)

θs(t− 1) =
a1(t− 1)′Ω(t)−1a1(t− 1) +G1(t− 1)′θs(t)G1(t− 1)

1 + r∗s(t)
(A53)

This completes part I of the proof because equations (A37) and (A47) verify that the
value functions at time t− 1 have the same form as at time t.

B.2 Part II.

To establish part II of the proof, I need to show that investors value functions for entering
entering period T has the same functional form as given in the proposition. The functional
form is given below.

Investors Value Functions at Time T

Recall that investors are infinitely lived but that from time T onwards they cannot alter their
holdings of risky assets, but they can continue to alter their consumption, and their holdings
of riskless assets. Because investors cannot trade after period T , the distinction between
small and large investors after this period is irrelevant. Hence, the index m used below could
be for either a large or small investor. Using the Bellman principle, the value function of
entering period T with risky asset holdings Qm and risk-free holdings qm, conditional on
time T dividends D(T ) satisfies the system of equations:

Vm(Qm(T ), qm(T ), t|D(T )) = max
Cm(T )

− exp−AmCm(T ) +δ EVm(Qm(t+ 1), qm(t+ 1), t+ 1),

(A54)
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subject to the constraints:

qm(T + 1) = r[qm(T ) +Qm(T )′D(T ) − C(T )] (A55)

Vm(Qm(T ), qm(T ), T ), the unconditional value of entering period T with holdings Qm(T ) and
qm(T ), is given by:

Vm(Qm(T ), qm(T ), T ) =

∫

D(T )

Vm(Qm(T ), qm(T ), T |D(T ))f(D(T ))dD(T ) (A56)

where, f(D(T )) is the probability density function for D(T ).

Equation (A56) is the Bellman equation for this optimization problem. Inspection shows
that the function,

Vm(Qm(T ), qm, T ) = −km(T ) exp−Am(1−(1/r))qm(T )−Am(1−(1/r))
Qm(T )′D̄
1−(1/r)

+.5A2
m(1−(1/r))2

Qm(T )′ΩQm(T )
1−(1/r)

(A57)
solves the Bellman equation, where

km(T ) =

(

r

r − 1

)

× (δr)
1

r−1 (A58)

For large investors, this equation can be rewritten as:

Vm(Qm(T ), qm, T ) = −km(T ) exp−Am(T )qm(T )−Am(T )Q′v̄m(T )+.5Am(T )2Q′θm(T )Q (A59)

where,

Am(T ) = Am[1 − (1/r)] (A60)

v̄m(T ) =
S ′

mD̄

1 − (1/r)
(A61)

θm(T ) =
S ′

mΩSm

1 − (1/r)
(A62)

For small investors, the value function in equation (A57) can be rewritten in the form:

Vs(Qs(T ), qs, T ) = −ks(T )F (Q, T ) exp−As(T )qs(T )−As(T )Qs(T )′[D̄+P (Q,T )]+.5As(T )2Qs(T )′Ω(T )Qs(T )

(A63)
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solves the Bellman equation, where

As(T ) = As[1 − (1/r)] (A64)

Γ(T ) = 0 (A65)

ks(T ) =

(

r

r − 1

)

× (δr)
1

r−1 (A66)

F (Q, T ) = −eQ′v̄s(T )−.5Q′θs(T )Q (A67)

v̄s(T ) = 0 (A68)

θs(T ) = 0 (A69)

P (Q, t) =
1

r
(α(T ) − Γ(T )Q) (A70)

α(T ) = D̄/[1 − (1/r)] (A71)

Γ(T ) = 0 (A72)

Ω(T ) = Ω/[1 − (1/r)] (A73)

Since these value functions have the same form as given in the proposition, this completes
the induction and the proof of proposition 2. 2

Interpretation of Large Investors Risk Aversion

In this subsection, the portfolio problem of large investors is recast into a related problem
in which the demands of each large investor represent the portfolio choices of a mass of
identical small investors that pool their investment management decisions to economize on
the costs of monitoring the market. Specifically, the demands and consumption choices of
each large investor m, represents the demands of a mass µm of small investors that have
identical risk aversion Am,s, identical endowments of risky and risk free assets (Qm,s(T − 1)
and qm,s(T − 1)), and choose identical consumption Cm,s(T − 1). Given investors time T
value functions (equation (A57)), at time T − 1 each large investor maximizes the utility of
a representative small investor by solving the maximization problem:

max
Cm,s,∆Qm,s

−e−Am,sCm,s − δVm,s(Qm,s(T ), qm,s(T ), T ) (A74)

subject to the standard budget constraint (A16) and subject to the constraint that the large
investors total trading activity and consumption choices are split evenly among the mass
µm of small investors that he represents. For example, if he wants to buy 1 share of stock
for each small investor, and there are 100 small investors then he has to buy 100 shares of
stock. More generally, the large investors choices are related to the small investors choices
as follows:

Qm + ∆Qm = (Qm,s + ∆Qm,s) × µm

qm + ∆qm = (qm,s + ∆qm,s) × µm

Cm = Cm,s × µm

(A75)
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Using these to subsitute for Cm,s, Qm,s+∆Qm,s and qm,s+∆qm,s in the objective function
then shows that the maximization problem solved for the representative small investor has
the exact same form as the maximization problem for a large investor with risk aversion
Am,s/µm. If each large investor is interpreted as a mutual fund, this means that the risk
tolerance of the fund is equal to the risk tolerance of the typical investor in the fund times
the number of investors in the fund as measured by µm. Given this relationship is true in
the last period, it is straightforward to establish it in earlier periods.

B.3 Solutions for Value Function Parameters

This section provides further information on the parameters of investors value functions. I
first present solutions when there are no distressed sales.

No Distressed Sales Case

The backwards induction analysis expresses the parameters of the value functions as resulting
from a series of Riccati difference equations. The purpose of this subsection is to more fully
characterize the parameters of the value functions. The next proposition provides more
information about the parameters of the value functions for the large investors:

Proposition 8 For all time periods t = 1, . . . , T − 1, and for large investors m = 2, . . .M :

v̄m(t) =
S ′

mD̄

1 − (1/r)
(A76)

α(t) = D̄/[1 − (1/r)] (A77)

Am(t) = Am[1 − (1/r)] (A78)

r∗(t) = r − 1 (A79)

km(t) =

(

r

r − 1

)

× (δr)
1

r−1 (A80)

Proof:

For v̄m(t) and α(t):

The proof is by induction. First, suppose that the results for v̄m(t) and α(t) are true at
time t. Then, since α(t) = D̄/[1−(1/r)], then from equation (A12), β0(t−1) = D̄/[1−(1/r)].
This implies that from equation (A21) that(−S1 + Sm)v̄m(t) − β0(t − 1) = 0. As a result
χ(t−1) = 0, which implies from equation (A30) that α(t−1) = β0(t−1) = D̄/[1−(1/r)] and
from equations (A26) and (A28) that H0(t− 1) = G0(t− 1) = 0. Substituting for H0(t− 1)
and G0(t− 1) in equation (A40) and simplifying then shows:

v̄m(t− 1) = S ′
mD̄ −H1(t− 1)′S ′

mα(t− 1)/r +G1(t− 1)′v̄m(t)/r (A81)
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Recalling that G1(t − 1) = H1(t − 1) + I, then plugging in the expressions for α(t − 1)
and v̄m(t) into the expression for v̄m(t− 1) confirms the result for time T − 1. To complete
the induction, it suffices to note that the results hold at time T as shown in equations (A71)
and (A61). This completes the proof for v̄m(t) and αm(t).

For Am(t) and r∗(t):

The proof is by induction. Suppose the results are true at time t, then applying the
solutions for Am(t) and r∗m(t) in equation (A38) produces the hypothesized expression for
Am(t− 1), and applying the solution for Am(t− 1) in equation (A36) produces the hypoth-
esized expression for r∗m(t − 1). To complete the induction note that the result is true for
Am(T ) and r∗(T ).

For km(t):

The proof is by induction. Assume it is true for time t. Then plugging the hypothesized
solution into equation (A39) and plugging in the solutions for r∗m(t) and plugging in H0(t−
1) = G0(t− 1) = 0 (established in the proof for v̄m(t)) and then simplifying shows the result
holds for km(t− 1). To complete the induction note that km(T ) has the hypothesized form.
2

The next proposition provides information on the value functions of the small investors:

Proposition 9 For all time periods t = 1, . . . , T − 1, and for each small investor s

a0(t) = 0 (A82)

v̄s(t) = 0 (A83)

As(t) = As[1 − (1/r)] (A84)

r∗s(t) = r − 1 (A85)

ks(t) =

(

r

r − 1

)

× (δr)
1

r−1 (A86)

Proof:

For a0(t) and v̄s(t): Plugging the solutions for α(t) and G0(t − 1) from proposition 8 into
equation (A50) shows that a0(t) = 0 for all times t. Since G0(t − 1) = 0 for all times t, it
then follows from equation (A51) that if v̄s(t) = 0, then so does v̄s(t− 1). To complete the
induction, note that v̄s(T ) = 0 (equation (A68)).

For As(t), r
∗
s(t), and ks(t):

The form of the proof is identical to that given in proposition 8.2

Proposition 10 Assume that for t < T , conditional on state variable Q(t) the Nash Equi-

librium trades of the large investors exists and is unique. Then for all m = 2, . . . ,M and
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t = 1, . . . , T , θm(t) has form:

ϑm(t) ⊗ Ω, (A87)

where, ϑm(t) is M ×M ; and

Γ(t) = γ(t) ⊗ Ω, (A88)

where, γ(t) is 1 ×M .

Proof: The proof is by induction. First, assume that the theorem is true at time t. Then,
from equations (A14) and (A13) βQB

(t−1) = BQB
(t−1)⊗Ω, and βQ(t−1) = BQ(t−1)⊗Ω,

where BQB
(t− 1) is 1×M − 1 and βQ(t− 1) is 1×M . Applying these substitutions in large

investors reaction functions and then stacking the results reveals that in equation (A23),
π(t − 1) = P(t − 1) ⊗ Ω and ξ(t − 1) = Z(t − 1) ⊗ Ω. The assumption that the Nash
Equilibrium trades in each period are unique implies that P(t− 1) is invertible. Solving for
H0(t− 1) and H1(t− 1) then shows that H0(t− 1) = 0 and

H1(t− 1) =

(

−S[P (t− 1)−1Z(t− 1)] ⊗ IN
(P (t− 1)−1Z(t− 1)) ⊗ IN

)

(A89)

=

(

[−ι′MP(t− 1)−1Z(t− 1)] ⊗ IN
(P(t− 1)−1Z(t− 1)) ⊗ IN

)

(A90)

= H1(t− 1) ⊗ IN (A91)

where ιM is a 1×M vector of ones, and H1(t−1) is M×M . Since G1(t−1) = H1(t−1)+INM ,
it follows that G1(t−1) = G1(t−1)⊗IN for G1(t−1) = H1(t−1)+IM . From here, substitution
in equation (A31) shows that Γ(t − 1) = γ(t − 1) ⊗ Ω and substitution in equation (A41)
shows that θm(t− 1) = ϑm(t− 1) ⊗ Ω. To complete the induction, note that the conditions
of the proposition are satisfied at time T . 2.

Corollary 2 For each small investors, and for each time period t = 1, . . . T ,

θs(t) = ϑs ⊗ Ω,

where ϑs is M ×M .

Proof: Straightforward induction involving application of the results from proposition 10.

Corollary 3 Let ∆Q.,n(t) and Q.,n(t) denote the M × 1 vector of time t asset holdings and

trades of asset n by investors 1 through M . Then,under the assumptions of proposition 10

for all n = 1, . . . N , ∆Q.,n(t) = H1(t)Q.,n(t).

Proof: By definition, ∆Q.,n(t) = (IM ⊗ e′n)∆Q(t), where en is an N × 1 vector which has 1
for its n’th element and zeroes elsewhere. Since H0(t) = 0, we also know

∆Q(t) = H1(t)Q(t) (A92)

= [H1(t) ⊗ IN ]Q(t). (A93)
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Multiplying both sides of equation (A93) by (IM ⊗ e′n) and then simplifying establishes the
result 2.

Corollary 3 shows that the equilbrium trades for each asset n only depend on market
participants holdings of that asset. They do not depend on market participants holdings of
other assets. Clearly, the result in the corollary is very special, not general.

B.4 Proofs of Asset Pricing Propositions

Proposition 5: When investors asset holdings are not Pareto Optimal, equilibrium expected

asset returns satisfy a linear factor model in which one factor is the market portfolio, and

the other factors correspond to the deviation of large investors asset holdings from pareto

optimal asset holdings.

Proof: Let QW denote the vector of pareto optimal holdings of risky assets. Manipulation of
the equation for equilibrium prices given in proposition 2, and substitution ofG0(t)+G(t)Q(t)
for Q(t+ 1) shows:

P (t+1)+D̄−rP (t) = [
1

r
α(t+1)+D̄−α(t)]− [

1

r
Γ(t+1)G0(t)]+[Γ(t)− 1

r
Γ(t+1)G1(t)]Q(t)

Plugging in the solution for α(t) = α(t−1) = D̄/[1−(1/r)] shows the first term in braces
is zero. The second term in braces is zero since proposition 8 shows that G0(t) = 0. Adding
and subtracting QW to Q(t), the above equation can be rewritten as:

P (t+1)+D̄−rP (t) = [Γ(t)− 1

r
Γ(t+1)G1(t)](Q(t)−QW )+[Γ(t)− 1

r
Γ(t+1)G1(t)]Q

W (A94)

Using the fact that Q1 = X − SQB, the vector Q(t) −QW can be expressed in terms of the
deviations of large investors asset holdings from pareto optimal asset holdings:

Q(t) −QW =

[

(X − SQB) − (X − SQW
B )

QB −QW
B

]

=

[

−S
I

]

(QB −QW
B )

Additionally, an implication of proposition 4 and the expression forequilibrium P (t) with
perfect competition, is that

[Γ(t) − 1

r
Γ(t+ 1)G1(t)]Q

W = λXΩX.

Making both of these substitutions in equation (A94) shows

P (t+ 1) + D̄ − rP (t) = λXΩX + [Γ(t) − 1

r
Γ(t+ 1)G1(t)]

(

−S
I

)

(QB(t) −QW
B )

43



Finally, applying the algebra in proposition 10 shows

[Γ(t) − 1

r
Γ(t+ 1)G1(t)]

(

−S
I

)

= λ(t) ⊗ Ω (A95)

where λ(t) is 1 ×M − 1. Making this substitution then shows:

P (t+ 1) + D̄ − rP (t) = λXΩX + [λ(t) ⊗ Ω](QB(t) −QW
B ) (A96)

= λXΩX +
M
∑

j=2

λ(m, t)Ω(Qm(t) −QW
m ) (A97)

where λ(m, t) = λ(t)s′m−1. 2.

Corollary 4 When asset holdings are not pareto optimal, then asset returns between time t
and time t+ 1 have an alternative M-factor model representation in which one factor is the

market portfolio, and the other factors are the returns on large investors risky asset holdings.

Proof: From proposition 5, we know that:

P (t+ 1) + D̄ − rP (t) = λXΩX +
M
∑

j=2

λ(m, t)Ω(Qm(t) −QW
m )

Making the substitution QW
m = (1/Am)X

PM
m=1 1/Am

, and then simplifying shows

P (t+ 1) + D̄ − rP (t) = λX(t)ΩX +
M
∑

j=2

λ(m, t)ΩQm(t)

where

λX(t) = λX −
M
∑

m=2

(

λ(m, t)/Am
∑M

j=1 1/Aj

)

2.

Corollary 5 When asset holdings at time t are not pareto-optimal, then asset returns at

time t + τ follow a factor model in which the market portfolio and the deviation of large

investors asset holdings from pareto-optimal asset holdings at time t are factors.

Proof: Iterating equation (A94), by τ periods shows:

P (t+ τ + 1) + D̄ − rP (t+ τ) = [Γ(t+ τ) − 1

r
Γ(t+ 1 + τ)G1(t+ τ)](Q(t+ τ) −QW )

+ [Γ(t+ τ) − 1

r
Γ(t+ τ + 1)G1(t+ τ)]QW ,

(A98)
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which implies:

P (t+ τ + 1) + D̄ − rP (t+ τ) = λXΩX + [λ(t, τ) ⊗ Ω](Q(t) −QW ) (A99)

= λXΩX +
M
∑

m=2

λm(t, τ)Ω(Qm(t) −QW
m ) (A100)

where,

λ(t, τ) ⊗ Ω = [Γ(t+ τ) − 1

r
Γ(t+ 1 + τ)G1(t+ τ)]

τ−1
∏

j=0

G1(t+ j),

and λm(t, τ) = λ(t, τ)S ′
m−1 2.

Assume that asset returns are generated by the large investor model, and that investors
asset holdings are pareto optimal. In the absence of any shocks which perturb investors asset
holdings, asset returns will be indistinguishable from those associated with the CAPM. If
there is a small 1-time perturbation in asset holdings, then because the deviation in asset
prices is proportional to the size of the perturbation, for small enough perturbations, the
behavior of the model is statistically indistinguishable from the CAPM for a given span of
data. This (obvious) point is made formally in the next proposition:

Proposition 11 In a sample of τ 1-period returns, let φ denote the size of a Chi-Square

test that Jensen’s α is not equal to 0, and let ρ denote the power of the test. Then for every

ρ > φ there are perturbations from pareto optimal asset holdings for which the power of the

test is less than ρ.

Proof: For simplicity, assume that λX , Ω, and X are known. Then an estimate of Jensen’s
α is given by

α̂ =
1

τ

τ
∑

i=1

P (t+ i) +D(t+ i) − rP (t+ i− 1) − λXΩ.

Under the null hypothesis that assets are priced by the CAPM,
√
τ α̂ ∼ N (0,Ω),

and
τ α̂′Ω−1α̂ ∼ χ2(0, N),

where the non-centrality parameter is 0. Under the alternative, assets are not priced by the
CAPM. If there is an initial perturbation of asset holdings under the alternative, without loss
of generality parameterize the direction of the perturbation for each m = 2, . . .M by ▽m and
the size of the perturbation by scalar δ so that (Qm(t)−QW

m ) = δ▽m. Then,
√
τ α̂ ∼ N(µ,Ω)

where, µ = δ 1√
τ

∑M
m=2 (

∑τ
i=1 λm(t, t+ i)▽m) . Therefore, τ α̂′Ω−1α̂ ∼ χ2(ψ,N) where ψ =

µ′Ω−1µ = O(δ2). The power of the test is continuously increasing in the non-centrality
parameter, and hence in δ; and when δ is 0, the power of the test is equal to its size. Therefore,
by the continuity of the power function, for small enough δ (small enough perturbations)
the power of the test is less than φ. 2
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B.5 Distressed Sales

Suppose one of the large investors is forced to sell their holdings of risky assets at time τs,
and then exit the market. In this section, I model how such distressed sales affect equilibrium
trades and prices when investors learn of the future sales at time τR, but he sales do not
occur until time τS. For simplicity, it is assumed that the distressed seller is not allowed to
trade between times τR and τS, and that no market participants (including the distressed
seller) are aware of the distress before time τR.

Time τS

After investors enter time τS, and receive their dividend and interest payments, I assume
they learn that one large investor will sell ∆QD units of risky assets during trade in time
period τS. To solve for how this affects investors value functions, I first solve for how it affects
the prices at which the competitive fringe is willing to absorb the large investors orderflow.
I then solve for the large investors equilibrium orderflow, and then I solve for equilibrium
risky asset trades, prices, and consumption at time τS. Finally, I solve for the equilibrium
value function for entering time τS.

For all of the analysis in this section, I assume there are M + 1 investors whose risky
asset holdings before time τR are equal to QW . Without loss of generality, I assume that
the M + 1’st investor will have to sell ∆QD at time τS. I further assume that this investor
cannot trade until time τS. With these assumptions, the M + 1’st investor is a modelling
device for distressed sales at time τS.

The primary focus is on how the other M investors behave as a result of the distressed
sales. Let Q(τS) denote the risky asset holdings of investors 1 through M at time τS. At time
τS, for any given purchases of risky assets ∆QB by large investors 2 through M , prices at
time τS and τS + 1 must equilibrate so that the competitive fringe fringe is willing to absorb
∆QD−S∆QB, which is the distressed sales less the net purchases of the other large investors.
From the equilibrium price function at time τS + 1, we know that given the distressed sales
and hypothesized large investors purchases, that

Q(τS + 1) =

(

Q1(τS) + ∆QD − S∆QB(τS)
QB(τS) + ∆QB(τS)

)

,

and that

P (τS + 1, Q(τS + 1)) =
1

r
(α(τS + 1) − Γ(τS + 1)Q(τS + 1))

To solve for the price schedule faced by large investors, I follow the steps beginning from
equation (A9) to derive a price schedule which is analogous to that in equation (A11):

P (., τS) =
1

r
(β0(τS) − βQ(τS)Q(τS) − βQB

(τS)∆QB(τS)) , (A101)
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where,

β0(τS) = D̄ + (1/r)α(τS + 1) − (1/r)Γ(τS + 1)S ′
1∆QD − A1(τS + 1)Ω(τS + 1)∆QD (A102)

βQ(τS) = (1/r)(Γ(τS + 1) + rA1(τS + 1)Ω(τS + 1)S1) (A103)

βQB
(τS) = (1/r)Γ(τS + 1)

(

−S
I

)

− A1(τS + 1)Ω(τS + 1)S (A104)

Notice, that the price schedule faced by large investors in equation (A101) differs from
that in equation (A11) because β0(τS) contains additional terms that cause the price to
change to compensate the fringe for absorbing a portion of the distressed asset sales.

Given the price schedule, large investors will choose their net purchases ∆QB(τS) while
accounting for the fact that for a given purchase of risky assets on their behalf, the amount
of risky assets that will be held by the fringe has increased by ∆QD. The resulting reaction
function for large investor m is given by:

πm(τS)∆QB = χm(τS) + ξm(τS)Q, (A105)

where,

πm(τS) = Am(τS + 1)(−S1 + Sm)[(θm(τS + 1) + θm(τS + 1)′)/2]

(

−S
I

)

− βQB
(τS) − SmβQB

(τS)′Sm

(A106)

χm(τS) =(−S1 + Sm)v̄m(τS + 1) − β0(τS)

− Am(τS + 1)(−S1 + Sm)

(

θm(τS + 1) + θm(τS + 1)′

2

)

S ′
1∆QD

(A107)

ξm(τS) = βQ(τS) − Am(t)(−S1 + Sm)[(θm(τS + 1) + θm(τS + 1)′)/2] (A108)

The distressed sales cause the χm term of large investors reaction function to change
through a price schedule effect because β0(τS) changes, and through a risk-sharing effect
because the distressed sales that are not absorbed by large investors will be absorbed by the
competitive fringe.

Stacking the reaction functions together and solving for the equilibrium trades of the
large investors, produces a solution for large investors trades which is analogous to that in
equation (A24). The competitive fringes equilibrium trades are then given by ∆QD−S∆QB.
Following the development in equation (A25), we have
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∆Q(τS) = H0(τS) +H1(τS)Q(τS). (A109)

where,

H0(τS) =

(

−SΠ(τS)−1χ(τS) + ∆QD

Π(τS)−1χ(τS)

)

, and H1(τS) =

(

−SΠ(τS)−1ξ(τS)
Π(τS)−1ξ(τS)

)

.

(A110)

From the proof of proposition 8, we know that χm(τs) = 0 when ∆QD = 0. It then
follows that χ(τS) and H0(τS) are linear functions of ∆QD. For convenience, I write these
relationships as:

χ(τS) = χ(τS)∗∆QD, (A111)

H0(τS) = H0(τS)∗∆QD. (A112)

Then, substituting the solution for ∆QB into equation (A101)shows that solutions for
the coefficients in the equilibrium price function in period τS take the form:

α(τS) =
D̄

1 − (1/r)
− α(τS)∗(∆QD) (A113)

where

α(τS)∗ = (1/r)Γ(τS + 1)S ′
1 + A1(τS + 1)Ω(τS + 1) + βQB

(τS)π(τS)−1χ(τS)∗.

The expression for Γ(τS) is not changed by the distressed sales.

Also, the path of equilibrium asset holdings in moving from period τS to period τS + 1 is
given by:

Q(τS + 1) = G0(τS) +G1(τS)Q(τS),

where G0(τS) = H0(τS) and G1(τS) = H1(τS) + I.

In the last two expressions, the difference with the expressions in equations (A26) and
(A28) is that H0(τS) contains an additional term which reflects the fact that the distressed
sales increase the amount of assets that are collectively held by all other market participants.
This implies that for t ≤ τS, when there are distressed sales, then H0(t) does not equal 0.

Given the solutions for the equilibrium price schedule, reaction functions, and asset hold-
ing transitions, the solution for the value functions in period τS proceeds as in any period t
and has the same functional form. For all periods t such that τR ≤ t ≤ τS, the value functions
are solved by backwards induction using the same approach as used earlier. Finally, before
period τR investors are not aware of the distressed sales, so the value function has the same
form that was solved for in the undistressed sales case. Put differently, after trade in period
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τR − 1 is over, when investors learn about the future distressed sales, their value functions
jump, and the future distressed sales create a basis for trade among the investors.

An important question is whether the distressed sales affect market liquidity after market
participants learn of the sales, but before the sales occur. If liquidity is measured by the
slope of the price function faced by large investors, then the answer is no. An examination of
equations (A13) and (A14), and equation (A31) shows that the “slope” measure of market
liquidity is determined by parameters that are invariant to the distressed sales when the
quantity of distressed sales is known. Therefore, knowledge of the impending sales do not
alter liquidity. Intuition for this result is that liquidity is based on market strucuture, and
on the riskiness of each share of stock. Because the quantity of impending sales is known,
it does not alter the riskiness of holding a share, and hence it has no effect on liquidity.29

However, if the quantity of distressed sales at time τS is random instead, then this creates
price risk at the time of the sales (prices are no longer deterministic) that will have liquidity
effects. The effects of random sales on liquidity is examined further in what follows.

B.6 Random Distressed Sales

For simplicity, assume that distressed sales are normally distributed:

∆QD ∼ N (µD,ΣD) (A114)

where µ > 0 is interpreted as distressed purchases.

To solve for the effect that distressed sales have on investors value functions, I substitute
the expressions for H0(τS) and α(τS) into large and small investors value functions and then
take expectations with respect to the distribution of distressed sales. When doing so, I use
the results from proposition 8 and 9 to simplify the analysis.

Large Investors Value Function of Entering Period τS

After substituting the new expressions for H0(τS) and α(τs) into large investors value
functions, the value function conditional on ∆QD is an exponential linear quadratic function
of ∆QD with the following form:

Vm(qm, Q, τs|∆QD) =

[

r∗m(t) + 1

r∗m(t)

]

[δkm(t)r∗m(t)]
1

1+r∗m(t)

× e−.5∆Q′

DΦ∗

m∆QD−Am(τs)Q′(v̄m(τs+1)+L∗

m∆QD) × e.5Am(τs)2Q′θ∗m(τs)Q

(A115)

29In Kyle and Xiong (2002) additional share sales do alter liquidity because the sales alter investors wealth,
and thus increase investors absolute risk aversion.
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where, Φ∗
m is given by30:

Φ∗
m = Symm

(

2Am(τs)H
∗′
0 S

′
mα

∗/r − Am(τs)
2H∗′

0 θm(τs + 1)H∗
0/r
)

,

θ∗m(τs) =
−2H1(τS)′S ′

mΓ(τS)

rAm(τS)
+G1(τS)′θm(τS + 1)G1(τS)/r + S ′

mΩ(τS)Sm

and

L∗
m = H1(τs)

′S ′
mα

∗/r + Γ(τs)
′SmH

∗
0/r − Am(τs)G1(τs)

′
(

θm(τs + 1) + θm(τs + 1)′

2

)

G∗
0/r

A sufficient condition for E∆QD
{Vm(qm, Q, τs|∆QD)} to be bounded is that Φ∗

m is positive
semidefinite. There is no guarantee that this condition will be satisfied. An alternative
sufficient condition for the expectation to exist is that Σ−1

D + Φ∗
m is positive definite. If ΣD

is a scalar multiple of some nonsingular matrix M then, it is clear that when the scalar
multiple is close enough to zero, positive definiteness is guaranteed. I will assume that ΣD

is small enough to so that positive definiteness is guaranteed.

Taking expectations with respect to ∆QD then shows that:

Vm(qm, Q, τs) = km(τS) × e−Am(τS)qm−Am(τs)Q′v̄m(τS)+.5Am(τS)2Q′θm(τS)Q (A116)

where,

km(τS) = |I + ΣDΦ∗
m|−.5 ×

(

r
r−1

)

× (δr)
1

r−1 e.5µ′

DΣ−1
D [(Σ−1

D +Φ∗

m)−1−ΣD]Σ−1
D µD ,

v̄m(τS) = v̄m(τS + 1) + L∗
m(Σ−1

D + Φ∗
m)−1Σ−1

D µD,
θm(τS) = θ∗m(τS) + L∗

m(Σ−1
D + Φ∗

m)−1L∗′
m

(A117)

The random asset sales significantly change the parameters of the large investors value
functions at time τS. v̄m(τs) is equal to its value without distressed sales ((v̄m(τs + 1)) plus
an additional term that reflects the random distressed sales. Similarly, θm(τs) is equal to its
value without distressed sales (θ∗m(τs)) plus an additional term that reflects the distressed
sales. The most significant change is that tedious calculations show that the NM × NM
matrix θm(τs) cannot be written as the kronecker product of an M × M matrix with Ω.
This means that the asset pricing relationships between time periods τR (the time of the
rumor) and τS (the time of the random distressed sales)are different than earlier periods.
Even without the risk, pricing relationships are still affected by distressed sales as shown by
taking limits of the value function as Σd → 0. In this limit, θm(τS) approaches its original
value, but the asset sales affect v̄m(τs) by the amount −L∗

mµD.This is sufficient to cause the
asset pricing relationships to break down in the period between τR and τS.

Although the asset sales during time τS are random, large investors value function for time
τS remains an exponential linear quadratic function of large investors risky asset holdings
Q. This property will be convenient for solving the model backwards.

30The operator Symm() operates on squares matrices and returns the symmetric version of the matrix.
For example, Symm(X) = (X + X ′)/2.
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Small Investors Value Function of Entering Period τS

Following the same basic approach as for large investors, small investors value function
conditional on ∆QD is exponential linear quadratic in ∆QD and takes the form:

Vs(qs, Qs, Q, τS|∆QD) =

(

r

r − 1

)

× (δr)
1

r−1 × e−.5∆Q′

DΦ∗

s∆QD−Q′v̄∗

s∆QD−.5Q′θ∗sQ

× e−As(τs)qs(τs)−As(τs)Q′

s[ D̄
1−(1/r)

−α∗

r
∆QD−Γ(τs)

r
Q]+.5As(τS)2Q′

sΩ(τS)Qs ,

(A118)

where,

Φ∗
s = Symm

(

a∗
′

0 Ω(τS+1)−1a∗

0+G∗
′

0 θs(τs+1)G∗

0

r

)

a∗0 = α∗ − Γ(τs+1)G∗

0

r

v̄∗s =
a1(τs)′Ω(τs+1)−1a∗

0+G1(τs)′[(θs(τs+1)+θs(τs+1)′)/2]G∗

0

r

θ∗s = a1(τs)′Ω(τs+1)−1a1(τs)+G1(τs)′θs(τs+1)G1(τs)
r

(A119)

Then, taking expectations with respect to ∆QD shows that:

Vs(qs, Qs, Q, τS) = −Ks(τS)F (Q, τS)e−As(τs)qs−As(τs)Q′

s[D̄+P̂ (Q,τs)]+.5As(τs)2Q′

sΩ
∗(τs)Qs , (A120)

where,

Ks(τs) = |I + ΣDΦ∗
s|−.5 ×

(

r

r − 1

)

× (δr)
1

r−1 e.5µ′

DΣ−1
D [(Σ−1

D +Φ∗

s)−1−ΣD]Σ−1
D µD , (A121)

F (Q, τs) = e−Q′v̄s(τs)− 1
2
Q′θs(τs)Q,

v̄s(τs) = v∗s(Σ
−1
D + Φ∗

S)−1Σ−1
D µD,

θs(τs) = θ∗s − v̄∗s(Φ
∗
s + Σ−1

D )−1v̄∗
′

s ;

(A122)

P̂ (Q, τs) = 1
r
(α(τs + 1) − Γ(τs)Q) − α∗

r
(Σ−1

D + Φ∗
s)

−1Σ−1
D µD + α∗

r
(Σ−1

D + Φ∗
s)

−1v̄∗
′

s Q

= 1
r

([

α(τs + 1) − α∗(Σ−1
D + Φ∗

s)
−1Σ−1

D µD

]

−
[

Γ(τs) − α∗

r
(Σ−1

D + Φ∗
s)

−1v̄∗
′

s

]

Q
)

;
(A123)

and,

Ω∗(τs) = Ω(τS) +
α∗′

r
(Φ∗

s + Σ−1
D )−1α

∗

r
. (A124)

It is clear that the random distressed sales significantly affect the value function of the
small investors. The variance of asset prices increases the variance of excess returns [Ω∗(τs)]
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beyond the amount that they would be in the absence of distressed sales [Ω[τs)]. Additionally,
because asset prices in period τS are random, and correlated with changes in the state variable
Q, the correlation of asset prices with the state variable affects small investors demand for
the risky assets. The correlations show up when deriving the pseudo-price function P̂ (Q, τS),
which appears in small investors value functions. It should be noted that P̂ (Q, τS) is not the
equilibrium price function in period τS and it is not the expected value of the equilibrium
price function; instead it is a grouping of terms in the value function so that the small
investors value function has the same form as in periods t > τS. Because large investors
value functions also have the same form as in periods t > τs, the model can be solved
backwards from this point using the same sets of Riccatti equations that were used in the
earlier analysis.

More specifically, to analyze how random distressed sales affect the liquidity received by
large investors, I use the pseudo price function in period τS to solve for βQB

(τs − 1), which
is the slope of the price schedule faced by large investors in the period before the distressed
sales take place. Applying the analysis in equations (A11) through (A14) shows that

βQB
(τs − 1) =

{

(1/r)Γ(τs)

(

−S
I

)

− A1(τs)Ω(τs)S

}

− α∗

r
(Σ−1

d + Φ∗
s)

−1v̄∗
′

s

(

−S
I

)

− A1(τs)
α∗′

r
(Σ−1

d + Φ∗
s)

−1α
∗

r
S

(A125)

Equation (A125) shows that in time period τs−1, the liquidity received by large investors
is equal to the liquidity without the rumor (the term in braces) plus a term which reflects
the covariance of prices with large investors asset holdings (the second term) plus a term
which reflects an increased variance of prices (the third term). Examination of the third
term shows that the distressed sales affect the liquidity received by all large investors by the
same amount. But, the distressed sales affect the liquidity received by large investors by
potentially different amounts because the covariance between prices and the state variables
depends on each large investors willingess to absorb the distressed asset sales, and this varies
across large investors who differ in their risk aversion.

To for how distressed sales affect liquidity and trades in earlier periods, it is necessary to
use the analysis in this section to solve the model numerically.

B.7 Optimal Liquidations

Suppose there is a large investor who learns at time τR that he must liquidate his portfolio
of risky assets by time τS. What is the optimal liquidation strategy that the investor should
follow? To solve for the optimal liquidation strategy, I simply solve for the value functions
of the liquidator, and the other investors in the period that the remainder of the position
is liquidated. I then backwards induct to solve for investors value functions in earlier peri-
ods. Since the parameters of the value functions determine liquidity conditions, liquidity is
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endogenous: i.e. the liquidating investors price impact function and all other large investors
price impact functions depend on the fact that the liquidating investor plans to liquidate
by a certain date. Given the liquidity conditions, the trading path is also endogenous. The
value functions of the investors are derived below. With these value functions in hand, it is
straightforward to solve for the path of optimal liquidations.

The liquidator

The liquidating investor is assumed to be investor M + 1 in the model. He maximizes the
discounted expected utility of future consumption. Like other investors in the model, he has
discount rate δ and CARA utility of per-period consumption with coefficient of absolute risk
aversion AM+1. At the time that he liquidates his portfolio of risky assets, he is assumed to
choose his future consumption path subject to the constraint that he only holds the riskless
asset in his portfolio. Under this assumption, straightforward dynamic programming show
that after the risky asset portion of his portfolio has been totally liquidated, the value of the
liquidators remaining wealth has form:

VM+1(W ) =

(

r

r − 1

)

(rδ)
1

r−1 × e−A(1−(1/r))W (A126)

If the liquidating investor enters period τS with risky asset holdings QM+1, and the other
investors enter the period with the NM × 1 vector of risky asset holdings Q, then from
equation (A113) and proposition 2 we know that when the liquidating investor sells off his
remaining assets in period τS, then equilibrium prices have the form:

P (Q,QM+1, τS) =
1

r

(

D̄

1 − (1/r)
− α(τS)∗QM+1 − Γ(τs)Q

)

. (A127)

Therefore, the liquidating investors after liquidation wealth, W, is equal to

W = qM+1 +Q′
M+1[D(τs) + P (Q,QM+1, τS)],

where qM+1 is the cash carried into the period, and the following two terms are revenues
from dividends within the period and revenues from liquidating the risky asset position.
Substituting the expression for equilibrium price into wealth, and then substituting the result
into the liquidating investors value function and taking expectations over the distribution of
dividends, shows that to the liquidating investor, the value of entering period τS when the
vector of risky asset holdings in the economy is given by Q∗ = (Q′, Q′

M+1)
′, is exponential

linear quadratic in the state variables and has form:

VM+1(qm, Q
∗, τS) = −KM+1(τs)e

−AM+1(τS)Q∗
′

v̄M+1(τs)+.5AM+1(τs)Q∗
′

θM+1(τS)Q∗−AM+1(τS)qm+1 ,
(A128)
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where,

AM+1(τs) = AM+1(1 − (1/r)) (A129)

KM+1(τs) =

(

r

r − 1

)

× (δr)
1

r−1 (A130)

v̄M+1(τS) = S ′
M+1D̄/[1 − (1/r)], (A131)

and,

θM+1(τS) =

[

0[NM×NM ] Γ(τS)′/AM+1(τS)

Γ(τS)/AM+1(τS) [α∗(τS)/AM+1(τS)] + Ω

]

. (A132)

The value functions for the large and small investors can be derived similarly.

Large Investors Value Function at Time τS

The expression for large investors value function conditional on distressed sales of amount
∆QD at time τS is provided in equation (A115). Making the subsitution ∆QD = QM+1, and
simplifying then shows that large investors value function (investors 2 through M) in time
period τS has form:

Vm(qm, Q
∗, τS) = −Km(τs)e

−Am(τS)Q∗
′

v̄m(τs)+.5Am(τs)Q∗
′

θm(τS)Q∗−Am(τS)qm , (A133)

where,

Am(τs) = Am(1 − (1/r)) (A134)

km(τs) =

(

r

r − 1

)

× (δr)
1

r−1 (A135)

v̄m(τS) = S ′
mD̄/[1 − (1/r)], (A136)

and,

θm(τS) =

[

θm(τs)
∗ −L∗′

m/Am(τS)

−L∗
m/Am(τS) − Φ∗

m(τS)
Am(τS)2

]

. (A137)

Small Investors Value Function at Time τS

Small investors value function conditional on distressed sales ∆QD at time τS is provided
in equation (A118). Simplifying this expression using the same steps as for large investors
shows that small investors value function is given by:

Vs(qs, Qs, Q
∗, τS) = Ks(τs)F (Q∗, τs)e

−As(τs)qs−As(τs)Q′

s[D̄+P (Q∗,τs)]+.5As(τs)2Q′

sΩ
∗(τs)Qs , (A138)
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where,

As(τs) = As[1 − (1/r)] (A139)

Ks(τs) =

(

r

r − 1

)

× (δr)
1

r−1 (A140)

F (Q∗, τS) = e−Q∗
′

v̄s(τS)− 1
2
Q∗

′

θs(τs)Q∗

(A141)

P (Q∗, τS) =
1

r

(

D̄

1 − (1/r)
− Γ∗(τS)Q∗

)

(A142)

and,
Γ∗(τS) = [Γ(τs), α

∗(τS)]
v̄s(τS) = 0[N(M+1)×1]

θs(τS) =

(

θ∗s v̄∗s
v̄∗

′

s Φ∗
s

)

.
(A143)

Because all three types of investors at time τS have value functions that have the same
form as in proposition 2, it is possible to solve for their value functions and trades using the
same approach as in section B of the appendix.

B.8 Liquidity Received by the Large Investors

The paper uses two measures of the liquidity received by large investors, the first is the slope
of the price schedule with respect to large investors trades, or βQB

from equation (A11). The
second is the price response when a large investor has to sell a share of stock for exogenous
reasons to the other large investors. I evaluate this price effect when all investors asset
holdings are initially QW . To model this effect, I assume that the reaction function for the
large investor with the exogenous shock takes the form ∆Qm = −ιN , and N-vector of ones.
I substitute this reaction function for that of investor m in equation (A23) to solve for ∆QB.
The resulting price effect comes from equation (A11) and is equal to −βQB

∆QB.

B.9 Competitive Benchmark Model

It is useful to contrast the behavior in the multi-market model with large investors with the
behavior of asset prices and trades in the same model when all investors are price takers.
The derivation of prices and trades in this case is a special case of the derivation with large
investors. It is also a special case of the derivation in Stapleton and Subrahmanyam (1978).
Therefore, I will not provide a detailed derivation, but will instead just provide results.

There are two cases to consider. The first is that investors are infinitely lived and trade
risky assets forever. The second is that investors live forever, but that after period T − 1
trade in risky assets ceases, and investors consume their dividends and invest in the risk-free
asset.
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Case 1: Infinitely lived investors / Risky Asset Trade in All Periods.

In this infinite period set-up with competitive markets, the equilibrium risk-premium
should be time invariant. Denote this risk premium by ρ, where,

ρ = P (t+ 1) + D̄ − rP (t) (A144)

Solving this equation forward while imposing the transversality condition limt→∞ r−tP (t) =
0, shows that

P (t) =
D̄ − ρ

r − 1

for all time periods t.

Given the hypothesized behavior of prices, it remains to solve for ρ and then to show
that the hypothesized behavior of prices is consistent with equilibrium.

The function,

Vm(W, t) = − r

r − 1
(Am r δ)

−1
r−1 exp−Am(1−(1/r))W− .5ρ′Ω−1ρ

r−1

where ρ = (1−(1/r))ΩX
PM

m=1(1/Am)

satisfies the Bellman equation,

Vm(W, t) = max
Cm(t),
Qm(t),

Bm(t+ 1)

−e−AmCm(t) + Et{δVm(W (t+ 1), t+ 1)},

such that,
W (t+ 1) = Qm(t)′(P (t+ 1) +D(t+ 1)) +Bm(t+ 1),

and
Bm(t+ 1) = r(W (t) −Qm(t)′P (t) − Cm(t)).

In addition, agents optimal choices of Qm(t) at each time t satisfy the market clearing
condition for the hypothesized ρ. Substituting the hypothesized ρ into the expression for
equilibrium price, it follows that in a competitive equilibrium, the equilibrium price is given
by

P (t) =
D̄

r − 1
− ΩX

r
∑M

m=1
1

Am

(A145)
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Case 2: Infinite Lived Agents, but no Risky Asset Trade After Period T-1

In this case, the value of carrying risky assets into period T is given in equation (A57).
At time T − 1, when investors have this value function at time T , it turns out that the
equilibrium price of risky assets at time T1 is

P (T − 1) =
D̄

r − 1
− ΩX

r
∑M

m=1
1

Am

, (A146)

which is the same as the price at time T −1 in case 2. Moreover, the price at all time periods
before T − 1 is the same as at period T − 1.

C Details on The Simulations

For the simulations reported in section 3.2, and for the analysis on distressed sales, the
instantaneous risk aversions of investors 1 through 6 are 10, 1.8328889, 4.5822222, 11.455556,
28.638889, and 71.597222, respectively. This corresponds to the risk tolerances of large
investor m+ 1 having a risk tolerance equal to 0.4 times the risk tolerance of large investor
m for m = 2 to m = 5. The annualized risk free rate is r = 1.02; the annualized discount
rate is δ = 0.9; annualized dividends are normally distributed with meanD̄ = 1 and variance
Ω = 1. These parameters have to be scaled based on the trading frequency. I assume trades
occur once a day and that there are 250 trading days per year, which corresponds to a period
length of h = 1/250. The appropriate scaling of interest rates and discount rates are rh and
δh. For daily dividends, the mean and variance are D̄h and Ωh. Finally, each participants
daily risk aversion is scaled to be A/h. The number of outstanding shares of assets only
affects the level of prices, but not price dynamics or risk premia. For simplicity, the supply
of assets is normalized to 1. When there are distressed sales, the total amount of distressed
sales is 5.5 shares.
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Figure 1: Prices of Risk

Notes: The figure presents the time-series behavior of equilibrium prices for factor risk,
where the factors are the market portfolio, and deviations of each large investors risky asset
holdings from those associated with perfect risksharing. The price for the market factor is
denoted by the solid line. The large investors vary in their risk aversion, investor 2 is the
least risk averse and investor 6 is the most risk averse. The risk prices also vary by risk
aversion. The lowest risk prices (most negative) correspond to investor 2 while the highest
nonpositive risk price corresponds to investor 6.
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Figure 2: Forward Prices of Risk

Notes: The figure presents the time-series behavior of equilibrium forward prices for factor
risk, where the forward price measures the effect that deviations from optimal risk sharing
at time t have on asset returns at forward time t+ τ . In the figure t = 1000. The deviations
from optimal risk sharing correspond to risk factors as discussed in figure 1. The forward
price for the market factor is denoted by the solid line. The large investors vary in their
risk aversion, investor 2 is the least risk averse and investor 6 is the most risk averse. The
forward risk prices also vary by risk aversion. The lowest forward risk price in each panel
(most negative) correspond to investor 2 while the highest nonpositive forward risk price
corresponds to investor 6.
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Figure 3: Equilibrium Price Paths

Notes: The figure illustrates equilibrium price paths when investors hear a rumor at time
0 (which they know to be true) that future distressed sales will occur during time periods
390− 400. Price dynamics are presented when asset markets are competitive and when they
are imperfectly competitive. The imperfectly competitive price path assumes that large
investors vary sharply in their risk aversion. The associated trades are provided in figure 4.
Further details are in section 4 in the text.
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Figure 4: Equilibrium Trades when there is a Distressed Investor

Notes: When markets are imperfectly competitive, the figure presents the equilibrium trade
patterns that emerge in response to the rumor of distressed sales at time 0 followed by the
distressed sales from time periods 390-400. Investor 1 takes prices as given; investors 2-6 are
non-price taking investors who differ in their risk aversion. Large investors risk aversion is
increasing in investor number. Details on the trade patterns are provided in section 4 of the
text.
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Figure 5: Trade Response: Endowment Shock to Investor 6

Notes: The figure presents the equilibrium trade response when large investor 6 receives a
positive endowment shock at time 400, and is then free to sell part of her endowment through
time to other investors.
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Figure 6: Price Response: Endowment Shock to Investor 2

Notes: The figure presents the equilibrium price response when large investor 2 receives a
positive endowment shock at time 400, and is then free to sell part of her endowment through
time to other investors. Equilibrium trades are presented in figure 7.
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Figure 7: Trade Response: Endowment Shock to Investor 2

Notes: The figure presents the equilibrium trade response when large investor 2 receives a
positive endowment shock at time 400, and is then free to sell part of her endowment through
time to other investors. Equilibrium prices are presented in figure 6.
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Figure 8: Price Path with Optimal Liquidation

Notes: The figure presents price paths when large investors learn at time 0 that one large
investor must liquidate his risky asset position by time 400 and then exit the market. The
liquidation scenarios are optimal sales into illiquid, imperfectly competitive, markets (solid
line); sales into illiquid markets that are concentrated at time 400 (dashed line); and sales
into liquid, perfectly competitive, markets that are concentrated at time 400 (short dashed
line). The asset holdings for the optimally liquidating large investor are presented in figure
9, and the asset holdings for the other investors are presented in figure 10.
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Figure 9: Trades by Optimally Liquidating Distressed Investor

Notes: The figure presents the path of optimal asset holdings for a large investor when all
investors learn at time 0 that he must liquidate his risky asset position by time 400 and then
exit the market. The optimal asset holdings for the other investors are presented in figure
10. The equilibrium price path is presented in figure 8.
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Figure 10: Investors Asset Holdings During an Optimal Liquidation

Notes: The figure presents other investors paths of equilibrium asset holdings when one large
investor learns at time 0 that he must liquidate his risky asset holdings by time 400 and then
exit the market. Asset holdings are presented for a scenario in which the liquidating investor
can follow an optimal liquidation strategy (solid lines), and for a scenario in which his asset
sales are concentrated at time 400 (dashed lines). The optimal trades for the liquidating
investor are presented in figure 9. The price paths for the optimal and concentrated sales
scenarios are presented in figure 8.
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Figure 11: Slope of Price Impact Functions by Large Investor

Notes: The figure presents the price impact of large investors trades through time. Price
impact is the slope of the demand curve that large investors face when deciding to purchase
risky assets. The slope measures the per unit change in asset prices if the large investor buys
1 additional share when the positions of the other large investors are held fixed. When there
is more than one large investor, the price impact per share sold varies by large investors risk
aversion. More risk tolerant investors have a larger slope, i.e. their trades have a larger price
impact.
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